
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, Aug. 2023 2101
Copyright ⓒ 2023 KSII

This research was supported by the National Key Research and Development Program of China under Grant
2021YFB3101804.

http://doi.org/10.3837/tiis.2023.08.008 ISSN : 1976-7277

Cross-architecture Binary Function
Similarity Detection based on Composite

Feature Model

Xiaonan Li1,2, Guimin Zhang1*, Qingbao Li1, Ping Zhang1, Zhifeng Chen1,
Jinjin Liu2 and Shudan Yue1

1 Information Engineering University
Zhengzhou, Henan 450001 China

[e-mail: zh.guimin@163.com]
2 School of Computer Science, Zhongyuan University of Technology

Zhengzhou, Henan 450007 China
[e-mail: lxn@zut.edu.cn]

*Corresponding author: Guimin Zhang

Received April 12, 2023; accepted July 25, 2023; published August 31, 2023

Abstract

Recent studies have shown that the neural network-based binary code similarity detection
technology performs well in vulnerability mining, plagiarism detection, and malicious code
analysis. However, existing cross-architecture methods still suffer from insufficient feature
characterization and low discrimination accuracy. To address these issues, this paper proposes
a cross-architecture binary function similarity detection method based on composite feature
model (SDCFM). Firstly, the binary function is converted into vector representation according
to the proposed composite feature model, which is composed of instruction statistical features,
control flow graph structural features, and application program interface calling behavioral
features. Then, the composite features are embedded by the proposed hierarchical embedding
network based on a graph neural network. In which, the block-level features and the
function-level features are processed separately and finally fused into the embedding. In
addition, to make the trained model more accurate and stable, our method utilizes the
embeddings of predecessor nodes to modify the node embedding in the iterative updating
process of the graph neural network. To assess the effectiveness of composite feature model,
we contrast SDCFM with the state of art method on benchmark datasets. The experimental
results show that SDCFM has good performance both on the area under the curve in the binary
function similarity detection task and the vulnerable candidate function ranking in
vulnerability search task.

Keywords: Binary Similarity, Composite Feature Model, Cross-Architecture, Graph
Embedding Network, Vulnerability Detection.

mailto:lxn@zut.edu.

2102 Li et al.: Cross-architecture Binary Function Similarity
Detection based on Composite Feature Model

1. Introduction

With the rapid expansion of embedded devices and the widespread application of Internet of
Things (IoT), security concerns about firmware vulnerabilities are rising. Reusing code, which
results in the rapid spread of the same or similar vulnerabilities in firmware built on different
architectures, is one of the most important reasons for the high incidence of firmware attacks.
Due to the inability to accurately obtain the relationship between firmware suppliers,
subcontractors and developers, it is difficult to trace a vulnerability in firmware across
different architectures. Therefore, studying the method to detect similar vulnerabilities
accurately in existing firmware for different architectures is crucial for device security [1, 2].

Existing code similarity detection methods can be divided into source code based [3, 4] and
binary code based [5, 6]. Since most firmware source codes are often unavailable in practice,
researchers prefer to investigate cross-architecture similarity detection of binaries. In recent,
many researchers have proposed to convert binary functions into embeddings (i.e., numeric
vectors) and then use the distance between the two embeddings to measure the similarity
between a pair of functions [7-11]. Among various function similarity detection approaches,
graph embedding based methods have outstanding performance both in accuracy and speed
[12]. Especially, Genius [2] and Gemini [7] are the most representative and state-of-the-art
works in these studies, making the embedding method a research hotspot in code similarity
detection. However, in terms of feature characterization and discrimination accuracy of the
embedding model, existing methods still need to be further improved.

Fig. 1. Code example. The upper part shows the source code. The middle part shows the assembly code

and control flow graph corresponding to the source code above. The lower part shows the feature
vectors extracted from the assembly code according to the feature construction method of Gemini.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023 2103

For example, according to the feature description method of Gemini, the two functions
"output_length" and "get_value", as shown in Fig. 1, are described by identical embeddings,
which means that Gemini will consider the two functions to be similar. However, there is a big
difference between the two functions. The function "output_length" on the left calls the library
function "puts" to write a string to the standard output. In contrast, the function "get_value" on
the right calls the library function "atoi" to convert the numeric string into an integer. Gemini
cannot distinguish such functions because it only extracts the number of constants, different
types of instructions, and successor nodes to describe function features (shown at the bottom
of Fig. 1). No behavioral features are considered in Gemini. Other methods based on graph
embedding also suffer from the above problems and cannot precisely reflect the difference in
the behavior of different functions [8, 11]. Additionally, some researchers adopt natural
language processing methods to detect binary similarity [9, 10]. However, they only consider
the opcodes of the assembly instructions when extracting words and ignore the difference of
the operands, which means that they also cannot distinguish differences in behavior due to
different operands (such as the two functions "output_length" and "get_value" as shown in Fig.
1).

In response to these issues, this paper proposes a cross-architecture binary function
similarity detection method based on composite feature model, abbreviated as SDCFM.
SDCFM adopts composite feature model (CFM) to describe the binary function, which is
composed of instruction statistics in a basic block (i.e., statistical features), control flow graph
(CFG) (i.e., structural features), and application program interface (API) call information (i.e.,
behavioral features). Based on a comprehensive analysis of the attack surface and
cross-architecture applicability, CFM currently only focuses on Glibc API call information.
Then, SDCFM proposes a hierarchical embedding method to generate embeddings for
cross-architecture binary functions. To the best of our knowledge, SDCFM is the first attempt
to analyze binary code similarity by combining API call features with statistical features of
basic block instructions and structural features exhibited by CFG. The contribution of this
paper involves the following aspects:

(1) We propose a CFM to characterize features of the binary function. The CFM utilizes the
behavioral features of the API function call and combines them with statistical features of
basic block instructions and CFG structural features to describe the cross-architecture features
of functions more precisely.

(2) We propose a hierarchical embedding method to take full advantage of the features
extracted based on the CFM. In this way, the statistical features and behavioral features can be
embedded independently, and the three types of features in CFM can be fused into more
valuable feature vectors.

(3) During the update process of embeddings in the graph embedding network, we analyze
the directionality of GNN and choose the embeddings of predecessor nodes to modify that of
the current node. Empirical study proves that this manner can improve the accuracy of
similarity discrimination and enhance the stability of the model.

(4) We perform multiple cross-architecture similarity detection tests based on open-source
programs. For the testing dataset consisting of binary functions with Glibc API calls, SDCFM
gets a higher area under the curve (AUC) value (=0.983) than that of the baseline method
Gemini (=0.958). Furthermore, SDCFM places real vulnerable functions at the first place for
51 times among the 120 constructed cross-architecture vulnerability search tasks, which
outperforms Gemini (=15) by a large margin.

The remainder of this paper is organized as follows. Section 2 presents some existing
studies for code similarity detection. In Section 3, the overall framework, the raw feature

2104 Li et al.: Cross-architecture Binary Function Similarity
Detection based on Composite Feature Model

representation, and the hierarchical embedding method are presented. Section 4 presents our
experimental results and analysis. Section 5 discusses the limitation and future work. Section 6
concludes this paper.

2. Related Work
There are two critical challenges in the cross-architecture similarity analysis of binary code:
finding the raw features that can represent the semantics of code and converting the raw
features into vector representations that are easy to compare. Researchers have conducted
in-depth analysis.

2.1 Raw feature of binary code for similarity detection
Chua et al. [13] propose to represent instructions using word embedding, which learns
embeddings directly from a large set of assembly instructions. Ding et al. [14] decompose
CFG into instruction sequences, each representing a potential execution trace, and then
generate sequence embeddings based on instruction embeddings. Zuo et al. [9] optimize this
type of feature by abstracting the operands of assembly instructions and utilizing the longest
common subsequence in units of basic blocks to characterize codes. Yu et al. [10] introduce an
adjacency matrix to reserve the order information of the basic blocks in CFG. However, all the
above methods require large-scale datasets to train instruction embedding models. Some
methods may face the issue of out-of-vocabulary when dealing with assembly codes.

To obtain lightweight features, Eschweiler et al. [15] propose syntax-level features (e.g., the
number of logic instructions and function calls) and simplify function-level features before
performing graph matching. But this pre-filtering leads to a decrease in search accuracy. To
improve the matching accuracy, Feng et al. [2] add two structural features (the number of
offspring and betweenness) to build an ACFG to model functions. Due to the high time
consumption of extracting betweenness, Xu et al. [7] eliminate this attribute when
constructing ACFG. Ji et al. [11] and Gao et al. [8] also use feature description approaches
similar to [2] and [7].

Aiming at the problem that the existing methods lack the ability to describe function
behavior features, this paper adopts the CFM to represent the binary function features. On the
basis of making full use of the ACFG, the API call features are considered to improve the
ability of precise function characterization further. The API function call features itself have
cross-architecture robustness, which has been widely proved in program behavior analysis
research [16-19].

2.2 Embedding methods based on neural networks
In recent years, neural network-based embedding methods have gradually become the
mainstream of binary similarity detection. Among them, the graph embedding approaches and
NLP-based methods have been well applied in this field.

The graph embedding approaches usually target graph-structured objects (e.g., control-flow
graphs and function call graphs) and propagate node attributes according to the edges in the
graph. Feng et al. [2] are the first to introduce graph embeddings to the similarity detection of
binary functions. However, when computing similarity, it is still necessary to perform bipartite
graph matching, which results in high computational complexity. Xu et al. [7] construct a
Siamese network with two identical graph neural networks (GNN) and obtain a graph
embedding model through end-to-end training. Moreover, the similarity is obtained by
calculating the cosine distance between embeddings, which reduces the time consumption.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023 2105

Gao et al. [8] take the effects of data flow into account during the iterations of GNN, and Ji et
al. [11] construct a Triplet-Loss network with GNN to enlarge the distance of embeddings of
different codes. However, they both lead to further increases in training costs. Li et al. [20]
perform graph representation calculations based on paired graphs and increase the cross-graph
communication to make the matching model more sensitive to the difference in graph pairs.
But it is expensive for large graphs due to the graph matching. Such methods do not perform
differential learning on basic block-level and function-level features, resulting in the loss of
feature information.

The NLP-based methods typically treat instructions as words and sequences of instructions
as sentences, then leverage NLP techniques to generate embeddings for binary code. Zuo et al.
[9] utilize the skip-gram model to generate embeddings for assembly language and adopt the
LSTM and Siamese network to build a cross-language basic block embedding model. Ding et
al. [14] utilize the PV-DM model to generate embeddings of instruction sequences. But it is
designed for one assembly language type and cannot be directly applied to cross-architecture
semantic clone detection. Yu et al. [10] adopt BERT, MPNN, and Resnet to capture semantic
features, structural information, and the node order information, respectively, and fuse these
three parts to generate the final embedding at last. Such methods usually use different models
or techniques at various levels, such as assembly instructions, instruction sequences, and basic
block sequences.

In response to the feature loss in the current graph embedding methods, this paper adopts a
hierarchical embedding method. It propagates and aggregates basic block features according
to the CFG topology by GNN, then concatenates the block-level features with function-level
features and fuses them into the final function embedding at last.

3. Methodology

3.1 Overview
The purpose of SDCFM is to determine whether the semantics of the functions in the binary
are similar to those of the functions in the target function database. Its overall framework is
shown in Fig. 2.

SDCFM mainly comprises two key modules: the raw feature extractor (①) and the function
embedding generator (②). The raw feature extractor extracts the statistical features, structural
features, and behavioral features of a binary function. The three types of features are combined
into the composite feature. According to the CFM, each binary function is characterized by an
attributed control flow graph (ACFG, composed of statistical features and structural features)
and a set of behavioral features (i.e., API feature) (Section 3.2). The function embedding
generator encodes the composite features of a function into an embedding vector in a
high-dimensional space (Section 3.3). Specifically, the statistical features of basic blocks are
firstly propagated and aggregated along the CFG topology by using a graph neural network
(GNN), which can generate partial embedding. Then, the partial embedding and the behavioral
features are fused to generate the final embedding of the binary function by the
fully-connected layer.

2106 Li et al.: Cross-architecture Binary Function Similarity
Detection based on Composite Feature Model

Fig. 2. Framework of SDFCM.

The workflow of SDCFM includes two phases: the training phase and the detection phase.
In the training phase, SDCFM utilizes large-scale sample pairs with ground truth to train a

neural network model, i.e., the function embedding generator, which should generate similar
embedding for the functions with similar semantics. Our approach uses the default policy that
binary functions compiled from the same source code are homologous and analogous
regardless of architecture or compiler optimization level. Therefore, such function pairs are
used to construct positive samples, with the label 1. Meanwhile, the negative samples are
constructed from function pairs in the same binary but with different names, with the label -1.
Subsequently, the composite features of the two functions in each sample pair are extracted by
the raw feature extractor (①) and then fed to a Siamese network [21] (④), which is composed
of two identical function embedding generators (②and③). The Siamese network updates and
adjusts related parameters through the back-propagation algorithm until the L2 loss in the
training dataset reaches a relatively small value. Finally, a fairly optimal function embedding
generator (②) is obtained.

In the detection phase, SDCFM detects the similarity between the binary to be detected and
the functions in the target function database. We first construct the target function database by
collecting binary code of functions that we care about (such as vulnerable functions). Then, all
binary functions in the target function database are processed by the raw feature extractor (①)
and the function embedding generator (②) to obtain the target embeddings, which will be
stored in the target function embedding database. When detecting whether a binary (i.e.,
detected binary in Fig. 2) contains functions in the target function database, we utilize (①) and
(②) to extract composite features of each function in the binary and generate their embeddings.
Then, the similarity scores between the embeddings of functions in the binary and that in the
target function embedding database are calculated, and the similarity ranking is obtained
finally. When applied to vulnerability search tasks, SDCFM needs to estimate whether the
binary contains functions similar to a known vulnerable function. In this case, the target
function is the vulnerable function, and the output is the similarity and ranking of all functions
in the binary compared with the vulnerable function.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023 2107

3.2 Raw Feature Representation
In response to insufficient feature description in existing methods, this paper proposes the
CFM to describe the raw features of binary functions. The CFM consists of statistical features,
structural features, and behavioral features. The statistical features describe ten categories of
statistics for a basic block, which are block-level features. The structural features, i.e., the CFG,
present the location of each basic block in the CFG. The behavioral features, i.e., the API call
information, represent function semantics. The structural and behavioral features all belong to
function-level features. The specific raw features information is shown in Table 1.

Table 1. The raw features information

Level Type Feature name

Block-level features

Statistical features No. of String Constants
No. of Numeric Constants
No. of Transfer Instructions
No. of Instructions
No. of Logical Instructions
No. of Arithmetic Instructions
No. of Bit Operation Instructions
No. of Branch Instructions
No. of Subroutine Calls
No. of Offspring

Function-level features Structural features CFG
Behavioral features Glibc API

The API call has been proven an effective feature for describing the behavior of functions,

both in source code semantic analysis [16, 17] and in dynamical binary similarity analysis [18,
19]. Although there are various APIs, the CFM currently only concerns the Glibc API and
extracts the Glibc API call information as the behavioral features for the following three
reasons. Firstly, a large number of known vulnerabilities (such as buffer overflow, format
string, and information disclosure vulnerabilities) are related to Glibc API function calls (such
as "strcpy" and "memcpy"). Secondly, programs can control and operate many system
resources (such as the network, standard input, and memory) by exploiting the Glibc API,
which means that Glibc API functions are closely related to the behavioral semantics of one
function. Last but not least, Glibc API is one of the most basic and widely used dynamic link
libraries for lots of applications in Linux-like operating systems. In general, taking the Glibc
API function call information as the behavioral features for one function has strong expression
ability and broad applicability.

The raw feature extractor is implemented based on angr [22]. Since each function call
instruction is regarded as the end of the current basic block in angr, there will be at most one
Glibc API call in a basic block. However, the called Glibc API function in a single basic block
can only reflect the behavior of this block. To reflect the behavioral semantics of the entire
function, we need to utilize the Glibc API call information of all basic blocks in the function.
Meanwhile, due to the numerous Glibc API functions, simply using the combined information
of the Glibc API calls in a function as function-level features will lead to high-dimensional
sparse features, which is not conducive to model convergence. Therefore, Glibc API functions
are categorized based on their features. By comprehensively considering safety and functional
characterization, CFM only concerns some typical and essential Glibc API function types, as
shown in Table 2.

2108 Li et al.: Cross-architecture Binary Function Similarity
Detection based on Composite Feature Model

Table 2. Glibc API function types
TypeID Glibc Function Type Example

1 Copy memcpy, memmove, strncpy
2 Compare memcmp, strncasecmp, strncmp
3 Memory Read strlen, getenv, times
4 Memory Write memset, setvbuf, write
5 Memory Management free, malloc, calloc
6 Data Type Transform strchr, atoi, strrchr
7 File Management rename, fileno, stat
8 File Write fwrite, fputs, fprintf
9 File Read fgets, fread, fread_chk

10 Output perror, puts, printf
11 Computing sin, cos, pow
12 Program Management exit, assert_fail, stderr
13 System Management shutdown, ioctl, access
14 Network Contact Management setsockopt, connect, htons
15 Network Data Capture recvfrom, recvmsg, recv
16 Network Data Send sendto, sctp_senmsg, rdma_post_send
17 Execution Control exec, fexecve, dlsym
18 Pipe Communication pipe, pclose, popen

This classification can bring two benefits. Firstly, it facilitates the discovery of potential

vulnerabilities. Since the Glibc API functions of the same category represent similar
behavioral semantics, binaries which call Glibc API functions of the same category are
semantically similar. Secondly, it improves the scalability of the detection model. When the
behavioral features are extended by taking new API functions into account, they can be
appended to a specific category according to its behavioral semantic without retraining the
deep learning model.

Given a binary function f , for each basic block Bb∈ , where B is the basic block set of
f , its function call attribute is denoted as α . If there is a Glibc API call in b , the value of
α will be set to the Glibc API function ID (each concerned Glibc API function is assigned a
unique ID number); otherwise, α is given as 0. Then, the numeric vector fz is used as the
function-level behavioral features of f . Formally, fz is a discrete numeric vector and

{ }df kkkz ,..., 21= , where jk represents the total times that functions of the j -th type (i.e.,
typeID = j) are called in f . Currently, the CFM only focuses on 18 types of Glibc API
functions, so d equals 18.

Besides, the block-level features (i.e., the top 10 attributes in Table 1) which are encoded as
a numerical vector and the structural features (i.e., CFG of the binary function) work together
to form an ACFG. It should be noted that the description of block-level features of ACFG in
SDCFM differs from that of Genius [2] or Gemini [7].

Therefore, according to the design of the CFM, each function is characterized by an ACFG
and a set of function-level behavioral features.

3.3 Hierarchical Embedding Method
As aforementioned, each binary function f is characterized by an ACFG and a set of
function-level behavioral features. The ACFG corresponding to f is denoted as EVg f ,= ,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023 2109

where V and E are the node set and the edge set respectively. Each node Vv∈ represents a
basic block in the ACFG, and the attribute of v is denoted as a c -dimensional feature vector

vx . The function-level behavioral feature corresponding to f is denoted as fz . The objective
of the function embedding generator is to generate embedding ()fθ of f for subsequent
similarity computation. The network architecture of the function embedding generator is
shown in Fig. 3.

Fig. 3. Function embedding generation network.

In converting composite features into embedding, SDCFM adopts a hierarchical embedding

method. Specifically, based on CFG topology, SDCFM utilizes GNN to embed the ACFG and
gets a partial embedding. Then, SDCFM splices the partial embedding and the behavioral
features to generate the final embedding by fully-connected layers.

The reason for hierarchical embedding is that if the Glibc API call information participates
in the propagation and aggregation of GNN directly with the ACFG, the role of behavioral
features in characterizing functions will be greatly limited. By applying the proposed
hierarchical embedding method, SDCFM maximizes the role of behavioral features in binary
function similarity detection.

3.3.1 Embedding Generation Network

The GNN used in SDCFM is adapted from Structure2vec [23], and the instantiation method is
inspired by Gemini. Fig. 3 visualizes the improved network architecture. Structure2vec is an
embedding network for structured data. It facilitates using stochastic gradient descent to learn
parameters and can handle large-scale datasets. Therefore, many subsequent kinds of research
refer to Structure2vec [8, 24, 25].

Structure2vec calculates a m -dimensional embedding vµ
~ for each node Vv∈ in the

graph fg and then aggregates the embeddings of all nodes as the embedding vector of the

graph fg . Its embedding algorithm of mean-field initializes the embedding ()0~
vµ at each node

as 0, and updates the embeddings at each iteration as:

() (){ } () { } ()()vNuuvNu
t

uv
t

v xxT ∈∈
−= ,~,~~ 1µµ (1)

2110 Li et al.: Cross-architecture Binary Function Similarity
Detection based on Composite Feature Model

Where T~ is an arbitrary nonlinear function mapping, ()vN represents the set of neighbors of

node v in the graph fg , and ()t
vµ

~ denotes the embedding of node v in the t -th iteration. The
update formula (1) indicates that the update process of the embedding is based on the topology
of the graph. In addition to the node itself, the embeddings of adjacent nodes in the previous
round and their attributes are used to update the node embedding in the current round.

Based on our observations, the execution of one node (i.e., one basic block) in CFG is only
affected by the execution results of its predecessor nodes and not by its successor nodes.
Therefore, we improve the original Structure2vec network by replacing adjacent nodes ()vN
with predecessor nodes ()vP in ACFG to update the node embedding. The embedding update
process is parameterized as follows:

() ()
() 














 





××+= ∑ ∈

−
− vPu

t
uhhv

t
v PGeLUPGeLUPxW 1

111
~...tanh~ µµ (2)

Where 1W is a cm× matrix, iP is the i -th coefficient of the fully connected layer, and h is the
number of fully-connected layers (also known as the embedding depth). GeLU is the Gaussian
error linear unit activation function [26]. In particular, the initial value of the node embedding

() ()vv xWGeLU 1
0~ =µ .
Afterward, the embeddings of all nodes obtained after T iterations are aggregated by

addition. In the end, the aggregation of node embeddings is spliced with function-level
features and fused into the final function embedding:

() ()()∑ ∈
=

Vv f
T

v zf ||~µρθ (3)

Where fz represents the function-level features of the function f , and ρ is a
fully-connected network. The input of ρ is the connection of the m -dimensional aggregated
embedding and the d -dimensional function-level features. The output is the final
e -dimensional function embedding. The number of layers and neurons in hidden layers can be
adjusted according to the training results.

3.3.2 Similarity Calculation
Given two binary functions 1f and 2f , the embedding ()1fθ and ()2fθ can be obtained by
the improved function embedding generation network shown in Fig. 3. In SDCFM, we
compare the embeddings of the two functions using the cosine similarity [11], which is
effective in binary code similarity detection. It is described as:

() ()() () ()
() ()21

21
21 ,cos

ff
ffff

θθ
θθθθ
⋅
⋅

= .

In the training phase, the positive sample pair has the ground-truth label 1=y , and the
negative sample pair has the label 1−=y . Then, the samples with ground truth are used to
perform end-to-end training on the Siamese network composed of two function embedding
generation networks. The stochastic gradient descent algorithm minimizes the mean square

error () ()()()∑ =
−

n
i ii ffy

n 1
2

21 ,cos1 θθ , n is the total number of sample pairs and i stands for

the i -th sample pair. This way, all parameters of the function embedding generation network
can be learned.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023 2111

4. Experiment and Evaluation
In this section, the effectiveness, stability, and cross-architecture vulnerability detection
ability of SDCFM are evaluated quantitatively to answer the following four Research
Questions (RQs):

RQ1: Is it reasonable and effective to adopt the categorical behavioral features and the
hierarchical embedding method?

RQ2: Is it possible to improve the stability of the embedding generation model by exploiting
the embeddings of predecessors to modify that of the current node in the iterative process of
the graph neural network?

RQ3: How is the binary code similarity detection accuracy of SDCFM compared with the
baseline method Gemini [7]?

RQ4: How is the cross-architecture vulnerability detection ability of SDCFM compared
with Gemini?

4.1 Experimental settings
We leverage angr [22], a platform-agnostic binary analysis framework of Python 3 libraries,
and use its API to implement the raw feature extractor. It extracts all the raw features that
conform to the CFM of binary functions, including CFG, Glibc API call information, and
statistics for various types of instructions in the basic blocks, according to Table 1.

Besides, a hierarchical embedding network is implemented in Python based on TensorFlow
[27]. According to the CFM, the dimensions of the statistical and behavioral features are 10
and 18, respectively. To ensure the best performance of baseline, we utilize the optimal
parameter settings of Gemini, in which the embedding size is 64, the embedding depth is 2,
and the number of iterations is 5.

All experiments are conducted on a server equipped with two Intel Xeon Gold 5218 CPUs
@ 2.3 GHz (64 cores in total), 256 GB memory, 1 TB usable HDD, and one NVIDIA Tesla
P100 GPU. All training and testing are performed with GPU acceleration.

4.2 Dataset
In the experiments, three datasets are constructed for evaluation.
Dataset Ⅰ: This dataset provides large-scale data with ground truth for training neural
networks and evaluating the accuracy of models. As the ground truth data is limited in most
tasks, we select some open-source programs and compile them into binaries for different
architectures and optimization levels. The binary functions compiled from the same source
code are considered similar, otherwise dissimilar. Specifically, we compile OpenSSL (version
1.0.1f and 1.0.1u) using GCCv7.5. The compiler is set to generate binaries for ARM, MIPS,
and PowerPC architectures, with optimization levels O0-O3. In this way, we get 143046
binary functions corresponding to 6324 source functions. According to the function names,
Dataset Ⅰ is divided into three disjoint subsets at a ratio of 8:1:1 for training, validation, and
testing, respectively. Functions with the same name will be assigned to the same subset. The
details of Dataset Ⅰ are presented in Table 3.

Table 3. Details of binary functions in Dataset Ⅰ and Dataset Ⅱ

 Total Training set Validation set Testing set
Dataset Ⅰ 143046 113317 15378 14351
Dataset Ⅱ 21783 17573 2092 2094

2112 Li et al.: Cross-architecture Binary Function Similarity
Detection based on Composite Feature Model

For each binary function f in the training set, a function 1f with the same function name is
randomly selected from the same subset to form a positive sample pair ()1, ,1f f . Meanwhile,
a function 2f with a different name is selected to construct a negative sample pair ()2, , 1f f − .
The sample generation methods on the validation set and testing set are the same as that on the
training set. Since the testing set, training set, and validation set are disjoint, the performance
of the model on unseen functions can be verified.
Dataset Ⅱ: To evaluate the effectiveness of the CFM and hierarchical embedding method for
cross-architecture binary similarity detection, we extract a subset from Dataset Ⅰ. It contains
21,873 binary functions corresponding to 1,291 source functions containing Glibc API calls.
Dataset Ⅱ is split into three disjoint subsets in the same proportion as Dataset Ⅰ, as shown in
Table 3. The labeled samples on Dataset Ⅱ also adopt the same construction method as
Dataset Ⅰ.
Dataset Ⅲ: This dataset is used to evaluate the vulnerability detection ability of the SDCFM.
Five published vulnerabilities in three open-source programs are selected from the Common
Vulnerabilities and Exposures (CVE) [28]. The details are shown in Table 4.

Table 4. Details of vulnerable functions and affected programs

Vulnerability function CVE No. Affected program Affected version
OBJ_obj2txt CVE-2014-3508

OpenSSL 1.0.1f MDC2_Update CVE-2016-6303
ssl3_get_new_session_ticket CVE-2015-1791

url_parse CVE-2017-6508 Wget 1.19.1
parse_datetime CVE-2014-9471 Coreutils 8.13

The compiler GCCv7.5 is used to generate binary code for the three affected open-source

programs in Table 4. The objective binary architectures include ARM, MIPS, and PowerPC,
with four optimization levels O0-O3, respectively. Therefore, 36 different binaries are
constructed. The statistics of functions in binaries in Dataset Ⅲ are presented in Table 5.

Table 5. Details of functions in binaries in Dataset Ⅲ

Architecture OpenSSL 1.0.1f Wget 1.19.1 Coreutils 8.13
O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3

ARM 1037 952 904 933 1037 826 802 708 1474 1401 1367 1197
MIPS 949 877 762 807 949 825 801 695 1420 1404 1369 1187

PowerPC 988 919 880 912 988 825 801 694 1417 1401 1367 1183

4.3 Evaluation Metrics
This paper adopts the receiver operating characteristic (ROC) curve and AUC to measure the
performance of binary code similarity detection models. The ROC curve is a powerful tool for
studying the generalization performance of a learner. The closer the ROC curve is to the
coordinate (0, 1), the better the performance of the learner. When the ROC curves of two
learners cross or are relatively close, we use AUC to compare their accuracy.

Then, we utilize Range and Standard Deviation to evaluate the stability of embedding
models. They are common metrics for measuring variations. The range reflects the difference
between the maximum and minimum values, and Standard Deviation demonstrates the degree
of dispersion of the data. For the detection results of the similarity detection model on different
testing sets, the smaller the variability of AUC values, the more stable the model detection
effect is.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023 2113

In addition, to conveniently find the most similar function to the vulnerable function,
functions should be ranked based on descending order of their similarity scores to the
vulnerable function. The ranking of detected vulnerable functions is an intuitive measure to
evaluate the performance of similarity-based vulnerability detection methods. Besides, if the
real vulnerable function is included in top-k candidates, we call this a top-k hit.

4.4 Experimental Results & Implications

4.4.1 Experiments for Answering RQ1
In order to evaluate the reasonableness and effectiveness of adopting the categorical
behavioral features and the hierarchical embedding method, four types of different features are
constructed for experiments.

 Without_API: The statistical features and structural features are used, without
behavioral features (i.e., Glibc API call features), to characterize the binary function.

 API_Id_In_Block: Based on the first type, the IDs of the Glibc API function called in
each basic block are added as block-level features.

 API_Type_In_Block: Based on the first type, the categorical behavioral features of
Glibc API calls in each basic block are added as block-level features.

 API_Type_In_Function: Based on the first type, the categorical behavioral features of
Glibc API calls in a function are added as function-level features, which are
processed according to the hierarchical embedding method.

We extract the above four types of features of binary functions in Dataset Ⅱ. Then, we feed
them to the function embedding generation network respectively and train the networks for
100 epochs. Hence, we obtain four models last. The AUC and loss of these models on the same
validation set are illustrated in Fig. 4.

Fig. 4. The AUC and loss of the different models on the validation set.
(a) AUC vs. the number of epochs. (b) Loss vs. the number of epochs.

According to Fig. 4(a), in the same epoch, the AUC values of API_Type_In_Block and

API_Type_In_Function are both higher than those of Without_API and API_Id_In_Block. It
demonstrates the effectiveness of the categorical behavior features in detecting the similarity
of binary function across architectures. Meanwhile, the loss values of API_Type_In_Block
and API_Type_In_Function are much smaller than those of Without_API and
API_Id_In_Block, as shown in Fig. 4(b). It indicates that the hierarchical embedding method
can generate much more similar embeddings for binary functions corresponding to the same
source codes.

2114 Li et al.: Cross-architecture Binary Function Similarity
Detection based on Composite Feature Model

Furthermore, the AUC value of API_Type_In_Function is always higher than
API_Type_In_Block. Moreover, the curve becomes stable in the 40th epoch, which converges
faster than that of API_Type_In_Block. This result shows that it is more effective to utilize
categorical behavior features of Glibc API call as function-level features. Meanwhile, it
confirms that too few Glibc API calls in a single basic block result in sparse classification
features, which is not conducive to model convergence.

Besides, the AUC value of API_Id_In_Block is close to that of Without_API after 60
epochs. This result reflects that simply using the Glibc API function ID as the block-level
feature will degenerate behavioral features into statistical features, which makes the Glibc API
feature fail to play a discriminative role in similarity detection. Due to the numerous Glibc API
functions, the large gap in function ID affects the convergence speed. Additionally, the IDs of
functions used less frequently may become noise and affect the accuracy of the model.

The above experimental results demonstrate the reasonableness and effectiveness of the
categorical behavioral features and the hierarchical embedding method.

4.4.2 Experiments for Answering RQ2
In the process of generating a particular node embedding using GNN, the node embeddings of
its adjacent nodes will be used to update its embedding. In order to evaluate the impact of
exploiting different nodes on the accuracy and stability of the model, this paper considers three
network structures.

 Neighbors: All the embeddings of adjacent nodes are utilized to update the current
node, including predecessors and successors.

 Successors: Only the embeddings of the successor nodes are used.
 Predecessors: Only the embeddings of the predecessor nodes are used.

Due to the randomness of sample generation, we perform ten tests with different samples on
Dataset Ⅱ to ensure the unbiasedness of the evaluation results. In each trial, the composite
features extracted from the same sample set are fed to three neural networks. We finally obtain
three different similarity detection models and evaluate the accuracy of these models on the
testing set. The results of the ten tests are presented in Table 6.

Table 6. The result of the ten tests

 1(%) 2(%) 3(%) 4(%) 5(%) 6(%) 7(%) 8(%) 9(%) 10(%) Mean
(%)

Range Standard
Deviation

Neighbors 97.17 97.16 98.05 98.23 98.52 98.08 97.73 98.51 97.69 98.27 97.94 1.36 0.47
Successors 97.54 97.38 97.50 98.18 98.35 97.72 97.27 98.58 97.79 98.45 97.88 1.31 0.45

Predecessors 97.86 97.54 98.17 98.25 98.67 98.08 97.93 98.67 98.17 98.74 98.21 1.2 0.37

As shown in Table 6, the model Predecessors (row 3) consistently achieves the highest

AUC compared with the model Neighbors (row 1) and Successors (row 2). The average AUC
value of the Predecessors is 0.27% higher than that of the Neighbors and 0.33% higher than
that of Successors. The results demonstrate the better performance of the model that uses the
embeddings of predecessor nodes in the previous round to update the current node.

The Range (the difference between the maximum and minimum values) and the Standard
Deviation (the square root of means of the squared deviations from the arithmetic mean) of
Predecessors are also the smallest among the three models. It indicates that only using the
embeddings of predecessors to update the current node makes the model more stable.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023 2115

4.4.3 Experiments for Answering RQ3
To further evaluate the accuracy of SDCFM, comparison experiments with the baseline are
conducted on Dataset Ⅰ and Dataset Ⅱ.
Baseline method. There are two reasons for choosing Gemini as the baseline. Firstly, the
construction of ACFG in the CFM refers to the design method of Gemini. The expansion of
statistical features and the addition of function-level behavior features can be regarded as an
improvement to Gemini's original ACFG. Therefore, it is more pertinent to compare SDCFM
with Gemini. Secondly, although Genius [2] extracts the original features of binary functions
in the form of ACFG for the first time, Gemini follows Genius' ACFG. But Gemini eliminates
the attributes with high computational cost and proves that its performance far exceeds Genius.
Several later GNN-based binary code similarity detection researches [8, 11, 29] have
improved Gemini. However, they only partially change the embedding process or loss
function, and do not change the method to characterize functions. Therefore, the comparison
with Gemini is more convincing.

In order to compare the performance more fairly and effectively, we adopt the same raw
feature extractor based on angr to construct ACFG according to the respective definition of
each method. Meanwhile, we utilize the optimal parameter settings of Gemini to ensure its
best performance.
Results. Fig. 5 shows the ROC curves of SDCFM and Gemini on the test set of Dataset Ⅰ and
Dataset Ⅱ. The ROC curves of SDCFM in Fig. 5(a) and Fig. 5(b) are both closer to the point
(0,1). The AUC values of SDCFM on Dataset Ⅰ and Ⅱ are 0.964 and 0.983, while the AUC
values of Gemini are 0.952 and 0.958, respectively. Therefore, SDCFM outperforms Gemini
in terms of accuracy.

Fig. 5. ROC curves of different methods on the testing set.

(a) Results on Dataset Ⅰ. (b) Results on Dataset Ⅱ.
(b)

By comparing test results on Dataset Ⅰ and Dataset Ⅱ, we find that the advantage in the
accuracy of SDCFM on Dataset Ⅰ is not as many as that on Dataset Ⅱ. The reason for this result
may be related to the composition of the dataset. In Dataset I, only 20.4% of all functions
contain calls to Glibc API (the number of functions in Dataset I is 6324, of which 1291
functions have calls to Glibc API), which dilutes the role of categorical Glibc API call feature
in binary code similarity detection. However, as mentioned in Section 3.2, many
vulnerabilities are closely related to Glibc API calls, so this attempt to improve the
discriminability of function embedding by focusing on Glibc API calls has great significance.

2116 Li et al.: Cross-architecture Binary Function Similarity
Detection based on Composite Feature Model

Table 7 demonstrates the time overhead on testing samples of Dataset Ⅰ and Dataset Ⅱ. Due
to the introduction of behavioral features and increased the neural network parameters,
SDCFM takes more time to generate embeddings for binary functions. However, the increased
time overhead is acceptable relative to the improvement in accuracy.

Table 7. Time overhead of Gemini and SDCFM on testing samples

 No. of sample pairs for
testing

Time Overhead (s) The difference on
Average (μs) Gemini SDCFM

Dataset Ⅰ 28476 7.56788 8.543317 34.2547
Dataset Ⅱ 4382 2.673718 2.933303 59.2389

4.4.4 Experiments for Answering RQ4
Two experiments are constructed on Dataset Ⅲ to evaluate the cross-architecture vulnerability
detection ability of the SDCFM. We use two scenarios to simulate a practical
cross-architecture binary vulnerability search task. The first is that the detected object and the
vulnerability sample have the same architecture but different compilation optimization levels
(Test 1). The second is that the detected object and the vulnerability sample have different
architectures (Test 2). We compare SDCFM with Gemini in terms of the average ranking of
the detected vulnerable functions in various search tests and the top-k hits (the times that the
real vulnerable function is contained in top-k candidates over multiple tests). It is important to
note that the Gemini and SDCFM models used in these experiments are general. That is, the
models are not retrained with specific vulnerable functions. Moreover, some vulnerable
functions in Dataset Ⅲ do not appear in the training set. It is more conducive to testing the
generalization ability of the model.

For the 36 binaries in Dataset Ⅲ, we utilize the function embedding generator trained on
Dataset Ⅱ to generate embeddings of the functions. The vulnerable binary functions with the
highest optimization level (i.e., O3) are used as query functions.
Test 1. In this evaluation, the query functions are searched from the binaries in the same
architecture but with different compilation optimization levels. For example, the five known
vulnerable functions at the O3 optimization level in ARM architecture are taken as the query
functions. The task is to search similar functions with query functions from the affected
binaries of ARM architecture with O0-O2 optimization levels. Thus, we have 15 vulnerability
search tests in one architecture. In this way, a total of 45 different tests are formed for the three
architectures of ARM, MIPS, and PowerPC. The rankings for vulnerable functions in the 45
search tests by Gemini and SDCFM are presented in Table 8.

Table 8. The search rankings of Gemini and SDCFM for five vulnerabilities at different optimization

levels

Architecture CVE No. Gemini SDCFM
O0 O1 O2 Avg O0 O1 O2 Avg

ARM

CVE-2014-3508 2 2 1 2 2 1 1 1
CVE-2016-6303 18 8 1 9 3 1 1 2
CVE-2015-1791 75 3 1 26 1 1 1 1
CVE-2017-6508 61 1 1 21 50 1 1 17
CVE-2014-9471 10 1 3 5 28 1 1 10

MIPS CVE-2014-3508 1 2 1 1 1 1 1 1
CVE-2016-6303 2 2 1 2 6 6 1 4

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023 2117

CVE-2015-1791 147 9 1 52 14 7 1 7
CVE-2017-6508 124 21 2 49 124 1 1 42
CVE-2014-9471 39 8 4 17 84 3 1 29

PowerPC

CVE-2014-3508 1 1 1 1 1 1 1 1
CVE-2016-6303 1 5 1 2 2 1 1 1
CVE-2015-1791 94 4 1 33 17 2 1 7
CVE-2017-6508 77 8 2 29 84 1 1 29
CVE-2014-9471 1 39 1 17 11 1 1 4

Avg 44 8 1 18 28 2 1 10

As shown in column 9 of Table 8, the SDCFM ranks the real vulnerable functions first in all

the 15 queries at the O2 optimization level. The top-1 hit rate reaches 100%. It can
significantly reduce the workload of manual analysis and facilitate the implementation of
large-scale vulnerability searches. Among the top-1 candidates for all 45 searches, SDCFM
identifies 29 real vulnerable functions, which is 61% higher than that of Gemini (=18). In
addition, in terms of the average performance of all tests, ten functions on average need to be
analyzed to find the real vulnerable function, and Gemini needs to analyze 18 functions on
average.

Fig. 6 presents the results of the top-k hits for 15 search tests. The search results for different
binaries with O0, O1, and O2 optimization levels are plotted in Fig. 6(a), Fig. 6(b), and Fig.
6(c), respectively. SDCFM has eight more top-1 hits than Gemini at the O1 optimization level
and detects all 15 real vulnerable functions in the top-10 candidates, as shown in Fig. 6(b). Fig.
6(c) shows that the top-1 hit rate of SDCFM for binaries compiled with O2 optimization level
reaches 100%. Overall, SDCFM outperforms Gemini in the vulnerability search across
compilation optimization levels at the same architecture.

Fig. 6. Top-k hits results.

 (a) O0 optimization level. (b) O1 optimization level. (c) O2 optimization level.

Test 2. In this evaluation, the query functions are searched from binaries in different
architectures with the queries. For example, the vulnerable functions in PowerPC with O3
optimization level are taken as the query functions. The task is to search the vulnerable
functions from the binaries in ARM and MIPS, regardless of the optimization level. Thus,
eight different searches are performed for one vulnerable function, and 40 different searches in

2118 Li et al.: Cross-architecture Binary Function Similarity
Detection based on Composite Feature Model

total for five vulnerable functions in one architecture. The cross-architecture search results of
the vulnerable functions in PowerPC architecture by Gemini and SDCFM are shown in Table
9.

Table 9. The cross-architecture search results of the vulnerable functions in PowerPC

Architecture CVE No. Gemini SDCFM
O0 O1 O2 O3 Avg O0 O1 O2 O3 Avg

MIPS

CVE-2014-3508 16 33 6 5 15 1 3 1 1 2
CVE-2016-6303 9 11 4 4 7 3 1 29 27 15
CVE-2015-1791 223 11 4 4 61 22 2 3 3 8
CVE-2017-6508 152 29 11 1 48 121 1 1 1 31
CVE-2014-9471 17 20 4 16 14 42 1 6 1 13

ARM

CVE-2014-3508 2 9 1 3 4 1 12 2 2 4
CVE-2016-6303 3 4 18 21 12 3 1 1 2 2
CVE-2015-1791 284 150 39 40 128 33 24 19 21 24
CVE-2017-6508 77 8 19 35 35 75 1 1 1 20
CVE-2014-9471 21 89 107 69 72 23 1 1 1 7

Avg 80 36 21 20 39 32 5 6 6 13

According to the results, SDCFM ranks the real vulnerable functions 13th on average, while

Gemini ranks them 39th on average. In the top-5 candidate functions, SDCFM identifies 27
real vulnerable functions with an accuracy of 67.5%, which is 2.25× higher than Gemini (the
value is 12). More importantly, SDCFM ranks the real vulnerable function in the first place 18
times, while Gemini correctly ranks that only 2 times.

In Test 2, there are 120 different cross-architecture searches in total for three architectures.
The results are shown in Fig. 7. There are 51 times (i.e., the sum of 17, 18, and 16) that
SDCFM ranks the real vulnerable functions in the top-1, and Gemini only has 15 times (i.e.,
the sum of 6, 2, and 7). Among other top-k candidates produced by SDCFM, it still contains
more real vulnerable functions than Gemini. These results prove that SDCFM has a stronger
ability for cross-architecture vulnerability detection than Gemini.

Fig. 7. The number of hits in the top-k candidates of Gemini and SDCFM on 120 vulnerability search

tests across architectures. Specifically, SDCFM-ARM indicates using the O3 optimization level
vulnerable function of ARM architecture as a query and searching it from the binaries of MIPS or

PowerPC architecture with O0-O3 optimization levels. Others are all expressed in this way.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023 2119

There are situations where the ranking of vulnerable functions detected by SDCFM lags
behind Gemini. For example, as shown in Table 8, when searching for the CVE-2016-6303
vulnerable function at the O1 optimization level in MIPS architecture, SDCFM ranks the real
vulnerable function 6th, while Gemini ranks it in the second place. By analyzing and checking
those functions that are placed before the real vulnerable function, we attribute this to two
main reasons. One is that, although different functions may have different statistical features,
structural features, and behavioral features, it is still possible to generate the same embedding
for these functions through neural network fusion. The other reason is that SDCFM classifies
Glibc API functions, hence, the functions containing similar Glibc API calls will have the
same behavioral features, which may also result in the same embedding for different
functions.

5. Discussion and Future Work
We have demonstrated the effectiveness and high accuracy of SDCFM in cross-architecture
binary code similarity detection and vulnerability search. However, this method still faces
some challenges.

SDCFM uses static analysis methods for binaries to extract all the raw features according to
CFM. Therefore, SDCFM cannot handle the obfuscated code in binaries currently, which may
affect the detection accuracy.

The extraction of CFG and other features currently used by CFM depends on angr
completely. Therefore, the accuracy of feature extraction is determined by the analysis
capability of angr.

At present, SDCFM only focuses on the Glibc API and has not considered the other APIs. It
is necessary to extend the scope of behavioral features to other public basic libraries in the
future to improve the characterization ability further, which is exactly the focus of our future
work.

6. Conclusion
This paper proposes a cross-architecture binary function similarity detection method based on
composite feature model called SDCFM. The CFM covers behavioral features, statistical
features, and structural features, to improve the ability of characterizing binary functions.
Besides, SDCFM adopts the hierarchical embedding method to fuse statistical and behavioral
features, and selects the attributes of predecessor nodes in CFG to iteratively update the graph
embedding network. Experimental results show that the AUC value of SDCFM reaches 0.964
on the benchmark dataset. Furthermore, when tested on the dataset consisting of binary
functions with Glibc API function calls, a higher AUC (=0.983) can be reached. Meanwhile,
SDCFM has a stronger ability to locate vulnerable functions accurately. Among the 120
constructed cross-architecture vulnerability search tasks, SDCFM accurately places the target
vulnerable function in the first candidate 51 times, which is 2.4× more than that of Gemini
(only 15). In general, SDCFM further improves the accuracy and stability of firmware binary
similarity detection.

2120 Li et al.: Cross-architecture Binary Function Similarity
Detection based on Composite Feature Model

References
[1] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale analysis of the security of

embedded firmwares,” in Proc. of the 23rd USENIX Security Symposium, San Diego, CA, USA,
pp. 95-110, August 2014. Article (CrossRef Link)

[2] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable Graph-based Bug Search for
Firmware Images,” in Proc. of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, pp. 480-491, October 2016. Article (CrossRef Link)

[3] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “μVulDeePecker: A Deep Learning-Based System for
Multiclass Vulnerability Detection,” IEEE Transactions on Dependable and Secure Computing,
vol. 18, no. 5, pp. 2224-2236, 2021. Article (CrossRef Link)

[4] Li Z, Zou D, Xu S, Jin H, Zhu Y, Chen Z, “SySeVR: A framework for using deep learning to detect
software vulnerabilities,” IEEE Transactions on Dependable Secure Computing, 19(4), 2244–2258,
2022. Article (CrossRef Link)

[5] J. Gao, X. Yang, Y. Fu, Y. Jiang, H. Shi, and J. Sun, “VulSeeker-pro: enhanced semantic learning
based binary vulnerability seeker with emulation,” in Proc. of the 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Lake Buena Vista, FL, USA, pp. 803-808, October 2018. Article (CrossRef Link)

[6] Y. Duan, X. Li, J. Wang, and H. Yin, “DeepBinDiff: Learning Program-Wide Code
Representations for Binary Diffing,” in Proc. of the 27th Network and Distributed System Security
Symposium, San Diego, California, USA, February 2020. Article (CrossRef Link)

[7] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural Network-based Graph Embedding
for Cross-Platform Binary Code Similarity Detection,” in Proc. of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, Dallas, TX, USA, pp. 363-376, October
2017. Article (CrossRef Link)

[8] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “VulSeeker: a semantic learning based vulnerability
seeker for cross-platform binary,” in Proc. of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pp. 896-899, Montpellier, France, September 2018.
Article (CrossRef Link)

[9] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural Machine Translation Inspired
Binary Code Similarity Comparison beyond Function Pairs,” in Proc. of the 26th Annual Network
and Distributed System Security Symposium, San Diego, California, USA, February 2019.
Article (CrossRef Link)

[10] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, “Order matters: Semantic-aware neural
networks for binary code similarity detection,” in Proc. of the 34th AAAI Conference on Artificial
Intelligence, New York, NY, USA, vol. 34(01), pp. 1145-1152, February 2020.
Article (CrossRef Link)

[11] Y. Ji, L. Cui, and H. H. Huang, “BugGraph: Differentiating Source-Binary Code Similarity with
Graph Triplet-Loss Network,” in Proc. of the 2021 ACM Asia Conference on Computer and
Communications Security, Virtual Event, Hong Kong, pp. 702-715, June 2021.
Article (CrossRef Link)

[12] Marcelli A, Grazizno M, Ugarte-Pedrero X, Fratantonio Y, Mansouri M, and Balzarotti D, “How
Machine Learning Is Solving the Binary Function Similarity Problem,” in Proc. of 31st USENIX
Security Symposium, Boston, MA, USA, pp. 2099–2116, August 10-12, 2022.
Article (CrossRef Link)

[13] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural Nets Can Learn Function Type Signatures
From Binaries,” in Proc. of the 26th USENIX Security Symposium, Vancouver, BC, Canada, pp.
99–116, August 2017. Article (CrossRef Link)

[14] S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2Vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler optimization,” in Proc. of
the 40th IEEE Symposium on Security and Privacy, San Francisco, CA, USA, pp. 472-489, May
2019. Article (CrossRef Link)

https://dl.acm.org/doi/10.5555/2671225.2671232
http://dx.doi.org/10.1145/2976749.2978370
http://doi.org/10.1109/TDSC.2019.2942930
http://dx.doi.org/10.1109/TDSC.2021.3051525
https://doi.org/10.1145/3236024.3275524
https://dx.doi.org/10.14722/ndss.2020.24311
http://dx.doi.org/10.1145/3133956.3134018
https://doi.org/10.1145/3238147.3240480
https://dx.doi.org/10.14722/ndss.2019.23492
https://doi.org/10.1609/aaai.v34i01.5466
https://doi.org/10.1145/3433210.3437533
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli
https://dl.acm.org/doi/abs/10.5555/3241189.3241199
https://doi.org/10.1109/SP.2019.00003

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023 2121

[15] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovRE: Efficient Cross-Architecture
Identification of Bugs in Binary Code,” in Proc. of the 23rd Annual Network and Distributed
System Security Symposium, San Diego, California, USA, February 2016. Article (CrossRef Link)

[16] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik, “Apisan: Sanitizing API usages through
semantic cross-checking,” in Proc. of the 25th USENIX Security Symposium, Austin, TX, USA, pp.
363-377, August 2016. Article (CrossRef Link)

[17] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong, “VulDeePecker: A Deep
Learning-Based System for Vulnerability Detection,” in Proc. of the 25th Annual Network and
Distributed System Security Symposium, San Diego, California, USA, February 2018.
Article (CrossRef Link)

[18] Y. Liao, R. Cai, G. Zhu, Y. Yin, and K. Li, “MobileFindr: Function Similarity Identification for
Reversing Mobile Binaries,” in Proc. of the 23rd European Symposium on Research in Computer
Security, Barcelona, Spain, pp. 66-83, September 2018. Article (CrossRef Link)

[19] C. Li, Z. Cheng, H. Zhu, L. Wang, Q. Lv, Y. Wang, N. Li, and D. Sun, “DMalNet: Dynamic
malware analysis based on API feature engineering and graph learning,” Computers & Security,
vol. 122, 102872, 2022. Article (CrossRef Link)

[20] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph Matching Networks for Learning the
Similarity of Graph Structured Objects,” in Proc. of the 36th International Conference on Machine
Learning, Long Beach, California, USA, pp. 3835-3845, June 2019. Article (CrossRef Link)

[21] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Säckinger, and R. Shah,
“Signature Verification Using A "Siamese" Time Delay Neural Network,” International Journal of
Pattern Recognition and Artificial Intelligence, vol. 7, no. 4, pp. 669-688, 1993.
Article (CrossRef Link)

[22] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng, C.
Hauser, C. Krügel, and G. Vigna, “SOK: (State of) The Art of War: Offensive Techniques in
Binary Analysis,” in Proc. of the 2016 IEEE Symposium on Security and Privacy, San Jose, CA,
USA, pp. 138-157, May 2016. Article (CrossRef Link)

[23] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent variable models for structured
data,” in Proc. of the 33rd International Conference on Machine Learning, New York City, NY,
USA, pp. 2702-2711, June 2016. Article (CrossRef Link)

[24] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial optimization
algorithms over graphs,” in Proc. of the 31st Annual Conference on Neural Information Processing
Systems, Long Beach, CA, USA, pp. 6351-6361, December 2017. Article (CrossRef Link)

[25] H. Liang, Z. Xie, Y. Chen, H. Ning, and J. Wang, “FIT: Inspect vulnerabilities in cross-architecture
firmware by deep learning and bipartite matching,” Computers & Security, vol. 99, 102032, 2020.
Article (CrossRef Link)

[26] D. Hendrycks, and K. Gimpel, “Gaussian Error Linear Units (GELUs),” Jun 2016.
Article (CrossRef Link)

[27] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M.
Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V.
Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale
Machine Learning,” in Proc. of the 12th USENIX Symposium on Operating Systems Design and
Implementation, Savannah, GA, USA, pp. 265-283, November 2016. Article (CrossRef Link)

[28] Common Vulnerabilities and Exposures. [Online]. Available: https://cve.mitre.org/.
[29] J. Gao, X. Yang, Y. Jiang, H. Song, K.-K. R. Choo, and J. Sun, “Semantic Learning Based

Cross-Platform Binary Vulnerability Search For IoT Devices,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 2, pp. 971-979, 2021. Article (CrossRef Link)

http://dx.doi.org/10.14722/ndss.2016.23185
https://dl.acm.org/doi/10.5555/3241094.3241123
https://doi.org/10.48550/arXiv.1801.01681
https://doi.org/10.1007/978-3-319-99073-6_4
https://doi.org/10.1016/j.cose.2022.102872
http://proceedings.mlr.press/v97/li19d.html
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1109/SP.2016.17
https://dl.acm.org/doi/10.5555/3045390.3045675
https://dl.acm.org/doi/10.5555/3295222.3295382
https://doi.org/10.1016/j.cose.2020.102032
https://arxiv.org/abs/1606.08415
https://dl.acm.org/doi/10.5555/3026877.3026899
https://cve.mitre.org/
http://doi.org/doi:10.1109/TII.2019.2947432

2122 Li et al.: Cross-architecture Binary Function Similarity
Detection based on Composite Feature Model

Xiaonan Li received the M.S. degree from Beijing University of Posts and
Telecommunications, China, in 2007. She is presently pursuing the Ph.D. degree at
Information Engineering University, Zhengzhou, China. She has been with the School of
Computer Science, Zhongyuan University of Technology, as a lecturer. Her research interests
include binary analysis and machine learning.

Guimin Zhang received the Ph.D. degree from Information Engineering University in
2018. He is currently a lecturer at Information Engineering University. His research interests
include cyberspace security and trusted computing.

Qingbao Li is currently a professor at Information Engineering University. His research
interests include information security, software protection theory and trusted computing.

Ping Zhang is currently a professor at Information Engineering University. Her research
interests include information security and parallel compilation.

Zhifeng Chen received the Ph.D. degree from Information Engineering University in 2016.
He is currently a lecturer at Information Engineering University. His research interests
include information security, software protection theory and trusted computing.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 8, August 2023 2123

JinJin Liu received the Ph.D. degree from Information Engineering University in 2021.
She is a lecturer now in the School of Computer Science, Zhongyuan University of
Technology. Her research interests include artificial intelligence, computer vision, and
pattern recognition.

Shudan Yue is currently pursuing the Ph.D. degree at Information Engineering University.
Her research interests include vulnerability detection, network and information security and
machine learning.

