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Abstract 

 
Recent studies have shown that the neural network-based binary code similarity detection 
technology performs well in vulnerability mining, plagiarism detection, and malicious code 
analysis. However, existing cross-architecture methods still suffer from insufficient feature 
characterization and low discrimination accuracy. To address these issues, this paper proposes 
a cross-architecture binary function similarity detection method based on composite feature 
model (SDCFM). Firstly, the binary function is converted into vector representation according 
to the proposed composite feature model, which is composed of instruction statistical features, 
control flow graph structural features, and application program interface calling behavioral 
features. Then, the composite features are embedded by the proposed hierarchical embedding 
network based on a graph neural network. In which, the block-level features and the 
function-level features are processed separately and finally fused into the embedding. In 
addition, to make the trained model more accurate and stable, our method utilizes the 
embeddings of predecessor nodes to modify the node embedding in the iterative updating 
process of the graph neural network. To assess the effectiveness of composite feature model, 
we contrast SDCFM with the state of art method on benchmark datasets. The experimental 
results show that SDCFM has good performance both on the area under the curve in the binary 
function similarity detection task and the vulnerable candidate function ranking in 
vulnerability search task. 
 
 
Keywords: Binary Similarity, Composite Feature Model, Cross-Architecture, Graph 
Embedding Network, Vulnerability Detection. 

mailto:lxn@zut.edu.


2102                                                                                                                 Li et al.: Cross-architecture Binary Function Similarity  
Detection based on Composite Feature Model 

1. Introduction 

With the rapid expansion of embedded devices and the widespread application of Internet of 
Things (IoT), security concerns about firmware vulnerabilities are rising. Reusing code, which 
results in the rapid spread of the same or similar vulnerabilities in firmware built on different 
architectures, is one of the most important reasons for the high incidence of firmware attacks. 
Due to the inability to accurately obtain the relationship between firmware suppliers, 
subcontractors and developers, it is difficult to trace a vulnerability in firmware across 
different architectures. Therefore, studying the method to detect similar vulnerabilities 
accurately in existing firmware for different architectures is crucial for device security [1, 2]. 

Existing code similarity detection methods can be divided into source code based [3, 4] and 
binary code based [5, 6]. Since most firmware source codes are often unavailable in practice, 
researchers prefer to investigate cross-architecture similarity detection of binaries. In recent, 
many researchers have proposed to convert binary functions into embeddings (i.e., numeric 
vectors) and then use the distance between the two embeddings to measure the similarity 
between a pair of functions [7-11]. Among various function similarity detection approaches, 
graph embedding based methods have outstanding performance both in accuracy and speed 
[12]. Especially, Genius [2] and Gemini [7] are the most representative and state-of-the-art 
works in these studies, making the embedding method a research hotspot in code similarity 
detection. However, in terms of feature characterization and discrimination accuracy of the 
embedding model, existing methods still need to be further improved. 

 
Fig. 1. Code example. The upper part shows the source code. The middle part shows the assembly code 

and control flow graph corresponding to the source code above. The lower part shows the feature 
vectors extracted from the assembly code according to the feature construction method of Gemini. 
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For example, according to the feature description method of Gemini, the two functions 
"output_length" and "get_value", as shown in Fig. 1, are described by identical embeddings, 
which means that Gemini will consider the two functions to be similar. However, there is a big 
difference between the two functions. The function "output_length" on the left calls the library 
function "puts" to write a string to the standard output. In contrast, the function "get_value" on 
the right calls the library function "atoi" to convert the numeric string into an integer. Gemini 
cannot distinguish such functions because it only extracts the number of constants, different 
types of instructions, and successor nodes to describe function features (shown at the bottom 
of Fig. 1). No behavioral features are considered in Gemini. Other methods based on graph 
embedding also suffer from the above problems and cannot precisely reflect the difference in 
the behavior of different functions [8, 11]. Additionally, some researchers adopt natural 
language processing methods to detect binary similarity [9, 10]. However, they only consider 
the opcodes of the assembly instructions when extracting words and ignore the difference of 
the operands, which means that they also cannot distinguish differences in behavior due to 
different operands (such as the two functions "output_length" and "get_value" as shown in Fig. 
1). 

In response to these issues, this paper proposes a cross-architecture binary function 
similarity detection method based on composite feature model, abbreviated as SDCFM. 
SDCFM adopts composite feature model (CFM) to describe the binary function, which is 
composed of instruction statistics in a basic block (i.e., statistical features), control flow graph 
(CFG) (i.e., structural features), and application program interface (API) call information (i.e., 
behavioral features). Based on a comprehensive analysis of the attack surface and 
cross-architecture applicability, CFM currently only focuses on Glibc API call information. 
Then, SDCFM proposes a hierarchical embedding method to generate embeddings for 
cross-architecture binary functions. To the best of our knowledge, SDCFM is the first attempt 
to analyze binary code similarity by combining API call features with statistical features of 
basic block instructions and structural features exhibited by CFG. The contribution of this 
paper involves the following aspects: 

(1) We propose a CFM to characterize features of the binary function. The CFM utilizes the 
behavioral features of the API function call and combines them with statistical features of 
basic block instructions and CFG structural features to describe the cross-architecture features 
of functions more precisely. 

(2) We propose a hierarchical embedding method to take full advantage of the features 
extracted based on the CFM. In this way, the statistical features and behavioral features can be 
embedded independently, and the three types of features in CFM can be fused into more 
valuable feature vectors.  

(3) During the update process of embeddings in the graph embedding network, we analyze 
the directionality of GNN and choose the embeddings of predecessor nodes to modify that of 
the current node. Empirical study proves that this manner can improve the accuracy of 
similarity discrimination and enhance the stability of the model.  

(4) We perform multiple cross-architecture similarity detection tests based on open-source 
programs. For the testing dataset consisting of binary functions with Glibc API calls, SDCFM 
gets a higher area under the curve (AUC) value (=0.983) than that of the baseline method 
Gemini (=0.958). Furthermore, SDCFM places real vulnerable functions at the first place for 
51 times among the 120 constructed cross-architecture vulnerability search tasks, which 
outperforms Gemini (=15) by a large margin. 

The remainder of this paper is organized as follows. Section 2 presents some existing 
studies for code similarity detection. In Section 3, the overall framework, the raw feature 
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representation, and the hierarchical embedding method are presented. Section 4 presents our 
experimental results and analysis. Section 5 discusses the limitation and future work. Section 6 
concludes this paper. 

2. Related Work 
There are two critical challenges in the cross-architecture similarity analysis of binary code: 
finding the raw features that can represent the semantics of code and converting the raw 
features into vector representations that are easy to compare. Researchers have conducted 
in-depth analysis. 

2.1 Raw feature of binary code for similarity detection 
Chua et al. [13] propose to represent instructions using word embedding, which learns 
embeddings directly from a large set of assembly instructions. Ding et al. [14] decompose 
CFG into instruction sequences, each representing a potential execution trace, and then 
generate sequence embeddings based on instruction embeddings. Zuo et al. [9] optimize this 
type of feature by abstracting the operands of assembly instructions and utilizing the longest 
common subsequence in units of basic blocks to characterize codes. Yu et al. [10] introduce an 
adjacency matrix to reserve the order information of the basic blocks in CFG. However, all the 
above methods require large-scale datasets to train instruction embedding models. Some 
methods may face the issue of out-of-vocabulary when dealing with assembly codes. 

To obtain lightweight features, Eschweiler et al. [15] propose syntax-level features (e.g., the 
number of logic instructions and function calls) and simplify function-level features before 
performing graph matching. But this pre-filtering leads to a decrease in search accuracy. To 
improve the matching accuracy, Feng et al. [2] add two structural features (the number of 
offspring and betweenness) to build an ACFG to model functions. Due to the high time 
consumption of extracting betweenness, Xu et al. [7] eliminate this attribute when 
constructing ACFG. Ji et al. [11] and Gao et al. [8] also use feature description approaches 
similar to [2] and [7]. 

Aiming at the problem that the existing methods lack the ability to describe function 
behavior features, this paper adopts the CFM to represent the binary function features. On the 
basis of making full use of the ACFG, the API call features are considered to improve the 
ability of precise function characterization further. The API function call features itself have 
cross-architecture robustness, which has been widely proved in program behavior analysis 
research [16-19].  

2.2 Embedding methods based on neural networks 
In recent years, neural network-based embedding methods have gradually become the 
mainstream of binary similarity detection. Among them, the graph embedding approaches and 
NLP-based methods have been well applied in this field. 

The graph embedding approaches usually target graph-structured objects (e.g., control-flow 
graphs and function call graphs) and propagate node attributes according to the edges in the 
graph. Feng et al. [2] are the first to introduce graph embeddings to the similarity detection of 
binary functions. However, when computing similarity, it is still necessary to perform bipartite 
graph matching, which results in high computational complexity. Xu et al. [7] construct a 
Siamese network with two identical graph neural networks (GNN) and obtain a graph 
embedding model through end-to-end training. Moreover, the similarity is obtained by 
calculating the cosine distance between embeddings, which reduces the time consumption. 
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Gao et al. [8] take the effects of data flow into account during the iterations of GNN, and Ji et 
al. [11] construct a Triplet-Loss network with GNN to enlarge the distance of embeddings of 
different codes. However, they both lead to further increases in training costs. Li et al. [20] 
perform graph representation calculations based on paired graphs and increase the cross-graph 
communication to make the matching model more sensitive to the difference in graph pairs. 
But it is expensive for large graphs due to the graph matching. Such methods do not perform 
differential learning on basic block-level and function-level features, resulting in the loss of 
feature information. 

The NLP-based methods typically treat instructions as words and sequences of instructions 
as sentences, then leverage NLP techniques to generate embeddings for binary code. Zuo et al. 
[9] utilize the skip-gram model to generate embeddings for assembly language and adopt the 
LSTM and Siamese network to build a cross-language basic block embedding model. Ding et 
al. [14] utilize the PV-DM model to generate embeddings of instruction sequences. But it is 
designed for one assembly language type and cannot be directly applied to cross-architecture 
semantic clone detection. Yu et al. [10] adopt BERT, MPNN, and Resnet to capture semantic 
features, structural information, and the node order information, respectively, and fuse these 
three parts to generate the final embedding at last. Such methods usually use different models 
or techniques at various levels, such as assembly instructions, instruction sequences, and basic 
block sequences. 

In response to the feature loss in the current graph embedding methods, this paper adopts a 
hierarchical embedding method. It propagates and aggregates basic block features according 
to the CFG topology by GNN, then concatenates the block-level features with function-level 
features and fuses them into the final function embedding at last. 

3. Methodology 

3.1 Overview 
The purpose of SDCFM is to determine whether the semantics of the functions in the binary 
are similar to those of the functions in the target function database. Its overall framework is 
shown in Fig. 2.  

SDCFM mainly comprises two key modules: the raw feature extractor (①) and the function 
embedding generator (②). The raw feature extractor extracts the statistical features, structural 
features, and behavioral features of a binary function. The three types of features are combined 
into the composite feature. According to the CFM, each binary function is characterized by an 
attributed control flow graph (ACFG, composed of statistical features and structural features) 
and a set of behavioral features (i.e., API feature) (Section 3.2). The function embedding 
generator encodes the composite features of a function into an embedding vector in a 
high-dimensional space (Section 3.3). Specifically, the statistical features of basic blocks are 
firstly propagated and aggregated along the CFG topology by using a graph neural network 
(GNN), which can generate partial embedding. Then, the partial embedding and the behavioral 
features are fused to generate the final embedding of the binary function by the 
fully-connected layer. 
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Fig. 2. Framework of SDFCM. 

 
The workflow of SDCFM includes two phases: the training phase and the detection phase. 
In the training phase, SDCFM utilizes large-scale sample pairs with ground truth to train a 

neural network model, i.e., the function embedding generator, which should generate similar 
embedding for the functions with similar semantics. Our approach uses the default policy that 
binary functions compiled from the same source code are homologous and analogous 
regardless of architecture or compiler optimization level. Therefore, such function pairs are 
used to construct positive samples, with the label 1. Meanwhile, the negative samples are 
constructed from function pairs in the same binary but with different names, with the label -1. 
Subsequently, the composite features of the two functions in each sample pair are extracted by 
the raw feature extractor (①) and then fed to a Siamese network [21] (④), which is composed 
of two identical function embedding generators (②and③). The Siamese network updates and 
adjusts related parameters through the back-propagation algorithm until the L2 loss in the 
training dataset reaches a relatively small value. Finally, a fairly optimal function embedding 
generator (②) is obtained. 

In the detection phase, SDCFM detects the similarity between the binary to be detected and 
the functions in the target function database. We first construct the target function database by 
collecting binary code of functions that we care about (such as vulnerable functions). Then, all 
binary functions in the target function database are processed by the raw feature extractor (①) 
and the function embedding generator (②) to obtain the target embeddings, which will be 
stored in the target function embedding database. When detecting whether a binary (i.e., 
detected binary in Fig. 2) contains functions in the target function database, we utilize (①) and 
(②) to extract composite features of each function in the binary and generate their embeddings. 
Then, the similarity scores between the embeddings of functions in the binary and that in the 
target function embedding database are calculated, and the similarity ranking is obtained 
finally. When applied to vulnerability search tasks, SDCFM needs to estimate whether the 
binary contains functions similar to a known vulnerable function. In this case, the target 
function is the vulnerable function, and the output is the similarity and ranking of all functions 
in the binary compared with the vulnerable function. 
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3.2 Raw Feature Representation 
In response to insufficient feature description in existing methods, this paper proposes the 
CFM to describe the raw features of binary functions. The CFM consists of statistical features, 
structural features, and behavioral features. The statistical features describe ten categories of 
statistics for a basic block, which are block-level features. The structural features, i.e., the CFG, 
present the location of each basic block in the CFG. The behavioral features, i.e., the API call 
information, represent function semantics. The structural and behavioral features all belong to 
function-level features. The specific raw features information is shown in Table 1. 

 
Table 1. The raw features information 

Level Type Feature name 

Block-level features 

Statistical features No. of String Constants 
No. of Numeric Constants 
No. of Transfer Instructions 
No. of Instructions 
No. of Logical Instructions 
No. of Arithmetic Instructions 
No. of Bit Operation Instructions 
No. of Branch Instructions 
No. of Subroutine Calls 
No. of Offspring 

Function-level features Structural features CFG 
Behavioral features Glibc API 

 
The API call has been proven an effective feature for describing the behavior of functions, 

both in source code semantic analysis [16, 17] and in dynamical binary similarity analysis [18, 
19]. Although there are various APIs, the CFM currently only concerns the Glibc API and 
extracts the Glibc API call information as the behavioral features for the following three 
reasons. Firstly, a large number of known vulnerabilities (such as buffer overflow, format 
string, and information disclosure vulnerabilities) are related to Glibc API function calls (such 
as "strcpy" and "memcpy"). Secondly, programs can control and operate many system 
resources (such as the network, standard input, and memory) by exploiting the Glibc API, 
which means that Glibc API functions are closely related to the behavioral semantics of one 
function. Last but not least, Glibc API is one of the most basic and widely used dynamic link 
libraries for lots of applications in Linux-like operating systems. In general, taking the Glibc 
API function call information as the behavioral features for one function has strong expression 
ability and broad applicability. 

The raw feature extractor is implemented based on angr [22]. Since each function call 
instruction is regarded as the end of the current basic block in angr, there will be at most one 
Glibc API call in a basic block. However, the called Glibc API function in a single basic block 
can only reflect the behavior of this block. To reflect the behavioral semantics of the entire 
function, we need to utilize the Glibc API call information of all basic blocks in the function. 
Meanwhile, due to the numerous Glibc API functions, simply using the combined information 
of the Glibc API calls in a function as function-level features will lead to high-dimensional 
sparse features, which is not conducive to model convergence. Therefore, Glibc API functions 
are categorized based on their features. By comprehensively considering safety and functional 
characterization, CFM only concerns some typical and essential Glibc API function types, as 
shown in Table 2. 
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Table 2. Glibc API function types 
TypeID Glibc Function Type Example 

1 Copy memcpy, memmove, strncpy 
2 Compare memcmp, strncasecmp, strncmp 
3 Memory Read strlen, getenv, times 
4 Memory Write memset, setvbuf, write 
5 Memory Management free, malloc, calloc 
6 Data Type Transform strchr, atoi, strrchr 
7 File Management rename, fileno, stat  
8 File Write fwrite, fputs, fprintf 
9 File Read fgets, fread, fread_chk 

10 Output perror, puts, printf 
11 Computing sin, cos, pow 
12 Program Management exit, assert_fail, stderr 
13 System Management shutdown, ioctl, access 
14 Network Contact Management setsockopt, connect, htons 
15 Network Data Capture recvfrom, recvmsg, recv 
16 Network Data Send sendto, sctp_senmsg, rdma_post_send 
17 Execution Control exec, fexecve, dlsym 
18 Pipe Communication pipe, pclose, popen 

 
This classification can bring two benefits. Firstly, it facilitates the discovery of potential 

vulnerabilities. Since the Glibc API functions of the same category represent similar 
behavioral semantics, binaries which call Glibc API functions of the same category are 
semantically similar. Secondly, it improves the scalability of the detection model. When the 
behavioral features are extended by taking new API functions into account, they can be 
appended to a specific category according to its behavioral semantic without retraining the 
deep learning model. 

Given a binary function f , for each basic block Bb∈ , where B is the basic block set of 
f , its function call attribute is denoted as α . If there is a Glibc API call in b , the value of 
α will be set to the Glibc API function ID (each concerned Glibc API function is assigned a 
unique ID number); otherwise, α is given as 0. Then, the numeric vector fz  is used as the 
function-level behavioral features of f . Formally, fz is a discrete numeric vector and 

{ }df kkkz ,..., 21= , where jk  represents the total times that functions of the j -th type (i.e., 
typeID = j ) are called in f . Currently, the CFM only focuses on 18 types of Glibc API 
functions, so d equals 18. 

Besides, the block-level features (i.e., the top 10 attributes in Table 1) which are encoded as 
a numerical vector and the structural features (i.e., CFG of the binary function) work together 
to form an ACFG. It should be noted that the description of block-level features of ACFG in 
SDCFM differs from that of Genius [2] or Gemini [7]. 

Therefore, according to the design of the CFM, each function is characterized by an ACFG 
and a set of function-level behavioral features. 

3.3 Hierarchical Embedding Method  
As aforementioned, each binary function f is characterized by an ACFG and a set of 
function-level behavioral features. The ACFG corresponding to f is denoted as EVg f ,= , 
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where V and E are the node set and the edge set respectively. Each node Vv∈ represents a 
basic block in the ACFG, and the attribute of v  is denoted as a c -dimensional feature vector 

vx . The function-level behavioral feature corresponding to f is denoted as fz . The objective 
of the function embedding generator is to generate embedding ( )fθ  of f for subsequent 
similarity computation. The network architecture of the function embedding generator is 
shown in Fig. 3. 
 

 
Fig. 3. Function embedding generation network. 

 
In converting composite features into embedding, SDCFM adopts a hierarchical embedding 

method. Specifically, based on CFG topology, SDCFM utilizes GNN to embed the ACFG and 
gets a partial embedding. Then, SDCFM splices the partial embedding and the behavioral 
features to generate the final embedding by fully-connected layers. 

The reason for hierarchical embedding is that if the Glibc API call information participates 
in the propagation and aggregation of GNN directly with the ACFG, the role of behavioral 
features in characterizing functions will be greatly limited. By applying the proposed 
hierarchical embedding method, SDCFM maximizes the role of behavioral features in binary 
function similarity detection. 

3.3.1 Embedding Generation Network  

The GNN used in SDCFM is adapted from Structure2vec [23], and the instantiation method is 
inspired by Gemini. Fig. 3 visualizes the improved network architecture. Structure2vec is an 
embedding network for structured data. It facilitates using stochastic gradient descent to learn 
parameters and can handle large-scale datasets. Therefore, many subsequent kinds of research 
refer to Structure2vec [8, 24, 25]. 

Structure2vec calculates a m -dimensional embedding vµ
~  for each node Vv∈ in the 

graph fg  and then aggregates the embeddings of all nodes as the embedding vector of the 

graph fg . Its embedding algorithm of mean-field initializes the embedding ( )0~
vµ at each node 

as 0, and updates the embeddings at each iteration as: 
 

( ) ( ){ } ( ) { } ( )( )vNuuvNu
t

uv
t

v xxT ∈∈
−= ,~,~~ 1µµ                                            (1) 
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Where T~  is an arbitrary nonlinear function mapping, ( )vN  represents the set of neighbors of 

node v in the graph fg , and ( )t
vµ

~ denotes the embedding of node v in the t -th iteration. The 
update formula (1) indicates that the update process of the embedding is based on the topology 
of the graph. In addition to the node itself, the embeddings of adjacent nodes in the previous 
round and their attributes are used to update the node embedding in the current round.  

Based on our observations, the execution of one node (i.e., one basic block) in CFG is only 
affected by the execution results of its predecessor nodes and not by its successor nodes. 
Therefore, we improve the original Structure2vec network by replacing adjacent nodes ( )vN  
with predecessor nodes ( )vP  in ACFG to update the node embedding. The embedding update 
process is parameterized as follows: 

( ) ( )
( ) 














 





××+= ∑ ∈

−
− vPu

t
uhhv

t
v PGeLUPGeLUPxW 1

111
~...tanh~ µµ                   (2) 

Where 1W  is a cm× matrix, iP is the i -th coefficient of the fully connected layer, and h is the 
number of fully-connected layers (also known as the embedding depth). GeLU is the Gaussian 
error linear unit activation function [26]. In particular, the initial value of the node embedding 

( ) ( )vv xWGeLU 1
0~ =µ . 
Afterward, the embeddings of all nodes obtained after T iterations are aggregated by 

addition. In the end, the aggregation of node embeddings is spliced with function-level 
features and fused into the final function embedding: 

( ) ( )( )∑ ∈
=

Vv f
T

v zf ||~µρθ                                                    (3) 

Where fz  represents the function-level features of the function f , and ρ is a 
fully-connected network. The input of ρ is the connection of the m -dimensional aggregated 
embedding and the d -dimensional function-level features. The output is the final 
e -dimensional function embedding. The number of layers and neurons in hidden layers can be 
adjusted according to the training results. 

3.3.2 Similarity Calculation  
Given two binary functions 1f  and 2f , the embedding ( )1fθ  and ( )2fθ  can be obtained by 
the improved function embedding generation network shown in Fig. 3. In SDCFM, we 
compare the embeddings of the two functions using the cosine similarity [11], which is 
effective in binary code similarity detection. It is described as: 

( ) ( )( ) ( ) ( )
( ) ( )21

21
21 ,cos

ff
ffff

θθ
θθθθ
⋅
⋅

= . 

In the training phase, the positive sample pair has the ground-truth label 1=y , and the 
negative sample pair has the label 1−=y . Then, the samples with ground truth are used to 
perform end-to-end training on the Siamese network composed of two function embedding 
generation networks. The stochastic gradient descent algorithm minimizes the mean square 

error ( ) ( )( )( )∑ =
−

n
i ii ffy

n 1
2

21 ,cos1 θθ , n  is the total number of sample pairs and i stands for 

the i -th sample pair. This way, all parameters of the function embedding generation network 
can be learned.  
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4. Experiment and Evaluation 
In this section, the effectiveness, stability, and cross-architecture vulnerability detection 
ability of SDCFM are evaluated quantitatively to answer the following four Research 
Questions (RQs): 

RQ1: Is it reasonable and effective to adopt the categorical behavioral features and the 
hierarchical embedding method? 

RQ2: Is it possible to improve the stability of the embedding generation model by exploiting 
the embeddings of predecessors to modify that of the current node in the iterative process of 
the graph neural network? 

RQ3: How is the binary code similarity detection accuracy of SDCFM compared with the 
baseline method Gemini [7]? 

RQ4: How is the cross-architecture vulnerability detection ability of SDCFM compared 
with Gemini? 

4.1 Experimental settings 
We leverage angr [22], a platform-agnostic binary analysis framework of Python 3 libraries, 
and use its API to implement the raw feature extractor. It extracts all the raw features that 
conform to the CFM of binary functions, including CFG, Glibc API call information, and 
statistics for various types of instructions in the basic blocks, according to Table 1.  

Besides, a hierarchical embedding network is implemented in Python based on TensorFlow 
[27]. According to the CFM, the dimensions of the statistical and behavioral features are 10 
and 18, respectively. To ensure the best performance of baseline, we utilize the optimal 
parameter settings of Gemini, in which the embedding size is 64, the embedding depth is 2, 
and the number of iterations is 5.  

All experiments are conducted on a server equipped with two Intel Xeon Gold 5218 CPUs 
@ 2.3 GHz (64 cores in total), 256 GB memory, 1 TB usable HDD, and one NVIDIA Tesla 
P100 GPU. All training and testing are performed with GPU acceleration. 

4.2 Dataset 
In the experiments, three datasets are constructed for evaluation. 
Dataset Ⅰ: This dataset provides large-scale data with ground truth for training neural 
networks and evaluating the accuracy of models. As the ground truth data is limited in most 
tasks, we select some open-source programs and compile them into binaries for different 
architectures and optimization levels. The binary functions compiled from the same source 
code are considered similar, otherwise dissimilar. Specifically, we compile OpenSSL (version 
1.0.1f and 1.0.1u) using GCCv7.5. The compiler is set to generate binaries for ARM, MIPS, 
and PowerPC architectures, with optimization levels O0-O3. In this way, we get 143046 
binary functions corresponding to 6324 source functions. According to the function names, 
Dataset Ⅰ is divided into three disjoint subsets at a ratio of 8:1:1 for training, validation, and 
testing, respectively. Functions with the same name will be assigned to the same subset. The 
details of Dataset Ⅰ are presented in Table 3. 

 
Table 3. Details of binary functions in Dataset Ⅰ and Dataset Ⅱ 

 Total Training set Validation set Testing set 
Dataset Ⅰ 143046 113317 15378 14351 
Dataset Ⅱ 21783 17573 2092 2094 
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For each binary function f in the training set, a function 1f  with the same function name is 
randomly selected from the same subset to form a positive sample pair ( )1, ,1f f . Meanwhile, 
a function 2f   with a different name is selected to construct a negative sample pair ( )2, , 1f f − . 
The sample generation methods on the validation set and testing set are the same as that on the 
training set. Since the testing set, training set, and validation set are disjoint, the performance 
of the model on unseen functions can be verified. 
Dataset Ⅱ: To evaluate the effectiveness of the CFM and hierarchical embedding method for 
cross-architecture binary similarity detection, we extract a subset from Dataset Ⅰ. It contains 
21,873 binary functions corresponding to 1,291 source functions containing Glibc API calls. 
Dataset Ⅱ is split into three disjoint subsets in the same proportion as Dataset Ⅰ, as shown in 
Table 3. The labeled samples on Dataset Ⅱ also adopt the same construction method as 
Dataset Ⅰ.  
Dataset Ⅲ: This dataset is used to evaluate the vulnerability detection ability of the SDCFM. 
Five published vulnerabilities in three open-source programs are selected from the Common 
Vulnerabilities and Exposures (CVE) [28]. The details are shown in Table 4. 

 
Table 4. Details of vulnerable functions and affected programs 

Vulnerability function CVE No. Affected program Affected version 
OBJ_obj2txt CVE-2014-3508 

OpenSSL 1.0.1f MDC2_Update CVE-2016-6303 
ssl3_get_new_session_ticket CVE-2015-1791 

url_parse CVE-2017-6508 Wget 1.19.1 
parse_datetime CVE-2014-9471 Coreutils 8.13 

 
The compiler GCCv7.5 is used to generate binary code for the three affected open-source 

programs in Table 4. The objective binary architectures include ARM, MIPS, and PowerPC, 
with four optimization levels O0-O3, respectively. Therefore, 36 different binaries are 
constructed. The statistics of functions in binaries in Dataset Ⅲ are presented in Table 5. 

 
Table 5. Details of functions in binaries in Dataset Ⅲ 

Architecture OpenSSL 1.0.1f Wget 1.19.1 Coreutils 8.13 
O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3 

ARM 1037 952 904 933 1037 826 802 708 1474 1401 1367 1197 
MIPS 949 877 762 807 949 825 801 695 1420 1404 1369 1187 

PowerPC 988 919 880 912 988 825 801 694 1417 1401 1367 1183 

4.3 Evaluation Metrics 
This paper adopts the receiver operating characteristic (ROC) curve and AUC to measure the 
performance of binary code similarity detection models. The ROC curve is a powerful tool for 
studying the generalization performance of a learner. The closer the ROC curve is to the 
coordinate (0, 1), the better the performance of the learner. When the ROC curves of two 
learners cross or are relatively close, we use AUC to compare their accuracy. 

Then, we utilize Range and Standard Deviation to evaluate the stability of embedding 
models. They are common metrics for measuring variations. The range reflects the difference 
between the maximum and minimum values, and Standard Deviation demonstrates the degree 
of dispersion of the data. For the detection results of the similarity detection model on different 
testing sets, the smaller the variability of AUC values, the more stable the model detection 
effect is. 
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In addition, to conveniently find the most similar function to the vulnerable function, 
functions should be ranked based on descending order of their similarity scores to the 
vulnerable function. The ranking of detected vulnerable functions is an intuitive measure to 
evaluate the performance of similarity-based vulnerability detection methods. Besides, if the 
real vulnerable function is included in top-k candidates, we call this a top-k hit. 

4.4 Experimental Results & Implications 

4.4.1 Experiments for Answering RQ1  
In order to evaluate the reasonableness and effectiveness of adopting the categorical 
behavioral features and the hierarchical embedding method, four types of different features are 
constructed for experiments.  

 Without_API: The statistical features and structural features are used, without 
behavioral features (i.e., Glibc API call features), to characterize the binary function. 

 API_Id_In_Block: Based on the first type, the IDs of the Glibc API function called in 
each basic block are added as block-level features. 

 API_Type_In_Block: Based on the first type, the categorical behavioral features of 
Glibc API calls in each basic block are added as block-level features. 

 API_Type_In_Function: Based on the first type, the categorical behavioral features of 
Glibc API calls in a function are added as function-level features, which are 
processed according to the hierarchical embedding method.  

We extract the above four types of features of binary functions in Dataset Ⅱ. Then, we feed 
them to the function embedding generation network respectively and train the networks for 
100 epochs. Hence, we obtain four models last. The AUC and loss of these models on the same 
validation set are illustrated in Fig. 4. 

 

 
Fig. 4. The AUC and loss of the different models on the validation set.  
(a) AUC vs. the number of epochs. (b) Loss vs. the number of epochs. 

 
According to Fig. 4(a), in the same epoch, the AUC values of API_Type_In_Block and 

API_Type_In_Function are both higher than those of Without_API and API_Id_In_Block. It 
demonstrates the effectiveness of the categorical behavior features in detecting the similarity 
of binary function across architectures. Meanwhile, the loss values of API_Type_In_Block 
and API_Type_In_Function are much smaller than those of Without_API and 
API_Id_In_Block, as shown in Fig. 4(b). It indicates that the hierarchical embedding method 
can generate much more similar embeddings for binary functions corresponding to the same 
source codes.  
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Furthermore, the AUC value of API_Type_In_Function is always higher than 
API_Type_In_Block. Moreover, the curve becomes stable in the 40th epoch, which converges 
faster than that of API_Type_In_Block. This result shows that it is more effective to utilize 
categorical behavior features of Glibc API call as function-level features. Meanwhile, it 
confirms that too few Glibc API calls in a single basic block result in sparse classification 
features, which is not conducive to model convergence.  

Besides, the AUC value of API_Id_In_Block is close to that of Without_API after 60 
epochs. This result reflects that simply using the Glibc API function ID as the block-level 
feature will degenerate behavioral features into statistical features, which makes the Glibc API 
feature fail to play a discriminative role in similarity detection. Due to the numerous Glibc API 
functions, the large gap in function ID affects the convergence speed. Additionally, the IDs of 
functions used less frequently may become noise and affect the accuracy of the model.  

The above experimental results demonstrate the reasonableness and effectiveness of the 
categorical behavioral features and the hierarchical embedding method. 

4.4.2 Experiments for Answering RQ2 
In the process of generating a particular node embedding using GNN, the node embeddings of 
its adjacent nodes will be used to update its embedding. In order to evaluate the impact of 
exploiting different nodes on the accuracy and stability of the model, this paper considers three 
network structures. 

 Neighbors: All the embeddings of adjacent nodes are utilized to update the current 
node, including predecessors and successors. 

 Successors: Only the embeddings of the successor nodes are used. 
 Predecessors: Only the embeddings of the predecessor nodes are used. 

Due to the randomness of sample generation, we perform ten tests with different samples on 
Dataset Ⅱ to ensure the unbiasedness of the evaluation results. In each trial, the composite 
features extracted from the same sample set are fed to three neural networks. We finally obtain 
three different similarity detection models and evaluate the accuracy of these models on the 
testing set. The results of the ten tests are presented in Table 6. 

 
Table 6. The result of the ten tests 

 1(%) 2(%) 3(%) 4(%) 5(%) 6(%) 7(%) 8(%) 9(%) 10(%) Mean 
(%) 

Range Standard 
Deviation 

Neighbors 97.17 97.16 98.05 98.23 98.52 98.08 97.73 98.51 97.69 98.27 97.94 1.36 0.47 
Successors 97.54 97.38 97.50 98.18 98.35 97.72 97.27 98.58 97.79 98.45 97.88 1.31 0.45 

Predecessors 97.86 97.54 98.17 98.25 98.67 98.08 97.93 98.67 98.17 98.74 98.21 1.2 0.37 
 
As shown in Table 6, the model Predecessors (row 3) consistently achieves the highest 

AUC compared with the model Neighbors (row 1) and Successors (row 2). The average AUC 
value of the Predecessors is 0.27% higher than that of the Neighbors and 0.33% higher than 
that of Successors. The results demonstrate the better performance of the model that uses the 
embeddings of predecessor nodes in the previous round to update the current node.  

The Range (the difference between the maximum and minimum values) and the Standard 
Deviation (the square root of means of the squared deviations from the arithmetic mean) of 
Predecessors are also the smallest among the three models. It indicates that only using the 
embeddings of predecessors to update the current node makes the model more stable. 
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4.4.3 Experiments for Answering RQ3 
To further evaluate the accuracy of SDCFM, comparison experiments with the baseline are 
conducted on Dataset Ⅰ and Dataset Ⅱ. 
Baseline method. There are two reasons for choosing Gemini as the baseline. Firstly, the 
construction of ACFG in the CFM refers to the design method of Gemini. The expansion of 
statistical features and the addition of function-level behavior features can be regarded as an 
improvement to Gemini's original ACFG. Therefore, it is more pertinent to compare SDCFM 
with Gemini. Secondly, although Genius [2] extracts the original features of binary functions 
in the form of ACFG for the first time, Gemini follows Genius' ACFG. But Gemini eliminates 
the attributes with high computational cost and proves that its performance far exceeds Genius. 
Several later GNN-based binary code similarity detection researches [8, 11, 29] have 
improved Gemini. However, they only partially change the embedding process or loss 
function, and do not change the method to characterize functions. Therefore, the comparison 
with Gemini is more convincing. 

In order to compare the performance more fairly and effectively, we adopt the same raw 
feature extractor based on angr to construct ACFG according to the respective definition of 
each method. Meanwhile, we utilize the optimal parameter settings of Gemini to ensure its 
best performance. 
Results. Fig. 5 shows the ROC curves of SDCFM and Gemini on the test set of Dataset Ⅰ and 
Dataset Ⅱ. The ROC curves of SDCFM in Fig. 5(a) and Fig. 5(b) are both closer to the point 
(0,1). The AUC values of SDCFM on Dataset Ⅰ and Ⅱ are 0.964 and 0.983, while the AUC 
values of Gemini are 0.952 and 0.958, respectively. Therefore, SDCFM outperforms Gemini 
in terms of accuracy. 
 

 
Fig. 5. ROC curves of different methods on the testing set.  

(a) Results on Dataset Ⅰ. (b) Results on Dataset Ⅱ. 
(b)  

By comparing test results on Dataset Ⅰ and Dataset Ⅱ, we find that the advantage in the 
accuracy of SDCFM on Dataset Ⅰ is not as many as that on Dataset Ⅱ. The reason for this result 
may be related to the composition of the dataset. In Dataset I, only 20.4% of all functions 
contain calls to Glibc API (the number of functions in Dataset I is 6324, of which 1291 
functions have calls to Glibc API), which dilutes the role of categorical Glibc API call feature 
in binary code similarity detection. However, as mentioned in Section 3.2, many 
vulnerabilities are closely related to Glibc API calls, so this attempt to improve the 
discriminability of function embedding by focusing on Glibc API calls has great significance. 
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Table 7 demonstrates the time overhead on testing samples of Dataset Ⅰ and Dataset Ⅱ. Due 
to the introduction of behavioral features and increased the neural network parameters, 
SDCFM takes more time to generate embeddings for binary functions. However, the increased 
time overhead is acceptable relative to the improvement in accuracy. 

 
Table 7. Time overhead of Gemini and SDCFM on testing samples 

 No. of sample pairs for 
testing 

Time Overhead (s)  The difference on 
Average (μs) Gemini SDCFM 

Dataset Ⅰ 28476 7.56788 8.543317 34.2547 
Dataset Ⅱ 4382 2.673718 2.933303 59.2389 

 

4.4.4 Experiments for Answering RQ4 
Two experiments are constructed on Dataset Ⅲ to evaluate the cross-architecture vulnerability 
detection ability of the SDCFM. We use two scenarios to simulate a practical 
cross-architecture binary vulnerability search task. The first is that the detected object and the 
vulnerability sample have the same architecture but different compilation optimization levels 
(Test 1). The second is that the detected object and the vulnerability sample have different 
architectures (Test 2). We compare SDCFM with Gemini in terms of the average ranking of 
the detected vulnerable functions in various search tests and the top-k hits (the times that the 
real vulnerable function is contained in top-k candidates over multiple tests). It is important to 
note that the Gemini and SDCFM models used in these experiments are general. That is, the 
models are not retrained with specific vulnerable functions. Moreover, some vulnerable 
functions in Dataset Ⅲ do not appear in the training set. It is more conducive to testing the 
generalization ability of the model. 

For the 36 binaries in Dataset Ⅲ, we utilize the function embedding generator trained on 
Dataset Ⅱ to generate embeddings of the functions. The vulnerable binary functions with the 
highest optimization level (i.e., O3) are used as query functions. 
Test 1. In this evaluation, the query functions are searched from the binaries in the same 
architecture but with different compilation optimization levels. For example, the five known 
vulnerable functions at the O3 optimization level in ARM architecture are taken as the query 
functions. The task is to search similar functions with query functions from the affected 
binaries of ARM architecture with O0-O2 optimization levels. Thus, we have 15 vulnerability 
search tests in one architecture. In this way, a total of 45 different tests are formed for the three 
architectures of ARM, MIPS, and PowerPC. The rankings for vulnerable functions in the 45 
search tests by Gemini and SDCFM are presented in Table 8. 

 
Table 8. The search rankings of Gemini and SDCFM for five vulnerabilities at different optimization 

levels 

Architecture CVE No. Gemini SDCFM 
O0 O1 O2 Avg O0 O1 O2 Avg 

ARM 

CVE-2014-3508 2 2 1 2 2 1 1 1 
CVE-2016-6303 18 8 1 9 3 1 1 2 
CVE-2015-1791 75 3 1 26 1 1 1 1 
CVE-2017-6508 61 1 1 21 50 1 1 17 
CVE-2014-9471 10 1 3 5 28 1 1 10 

MIPS CVE-2014-3508 1 2 1 1 1 1 1 1 
CVE-2016-6303 2 2 1 2 6 6 1 4 
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CVE-2015-1791 147 9 1 52 14 7 1 7 
CVE-2017-6508 124 21 2 49 124 1 1 42 
CVE-2014-9471 39 8 4 17 84 3 1 29 

PowerPC 

CVE-2014-3508 1 1 1 1 1 1 1 1 
CVE-2016-6303 1 5 1 2 2 1 1 1 
CVE-2015-1791 94 4 1 33 17 2 1 7 
CVE-2017-6508 77 8 2 29 84 1 1 29 
CVE-2014-9471 1 39 1 17 11 1 1 4 

Avg 44 8 1 18 28 2 1 10 
 
As shown in column 9 of Table 8, the SDCFM ranks the real vulnerable functions first in all 

the 15 queries at the O2 optimization level. The top-1 hit rate reaches 100%. It can 
significantly reduce the workload of manual analysis and facilitate the implementation of 
large-scale vulnerability searches. Among the top-1 candidates for all 45 searches, SDCFM 
identifies 29 real vulnerable functions, which is 61% higher than that of Gemini (=18). In 
addition, in terms of the average performance of all tests, ten functions on average need to be 
analyzed to find the real vulnerable function, and Gemini needs to analyze 18 functions on 
average. 

Fig. 6 presents the results of the top-k hits for 15 search tests. The search results for different 
binaries with O0, O1, and O2 optimization levels are plotted in Fig. 6(a), Fig. 6(b), and Fig. 
6(c), respectively. SDCFM has eight more top-1 hits than Gemini at the O1 optimization level 
and detects all 15 real vulnerable functions in the top-10 candidates, as shown in Fig. 6(b). Fig. 
6(c) shows that the top-1 hit rate of SDCFM for binaries compiled with O2 optimization level 
reaches 100%. Overall, SDCFM outperforms Gemini in the vulnerability search across 
compilation optimization levels at the same architecture. 

 

 
Fig. 6. Top-k hits results. 

 (a) O0 optimization level. (b) O1 optimization level. (c) O2 optimization level. 
 

Test 2. In this evaluation, the query functions are searched from binaries in different 
architectures with the queries. For example, the vulnerable functions in PowerPC with O3 
optimization level are taken as the query functions. The task is to search the vulnerable 
functions from the binaries in ARM and MIPS, regardless of the optimization level. Thus, 
eight different searches are performed for one vulnerable function, and 40 different searches in 
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total for five vulnerable functions in one architecture. The cross-architecture search results of 
the vulnerable functions in PowerPC architecture by Gemini and SDCFM are shown in Table 
9. 

 
Table 9. The cross-architecture search results of the vulnerable functions in PowerPC 

Architecture CVE No. Gemini SDCFM 
O0 O1 O2 O3 Avg O0 O1 O2 O3 Avg 

MIPS 

CVE-2014-3508 16 33 6 5 15 1 3 1 1 2 
CVE-2016-6303 9 11 4 4 7 3 1 29 27 15 
CVE-2015-1791 223 11 4 4 61 22 2 3 3 8 
CVE-2017-6508 152 29 11 1 48 121 1 1 1 31 
CVE-2014-9471 17 20 4 16 14 42 1 6 1 13 

ARM 

CVE-2014-3508 2 9 1 3 4 1 12 2 2 4 
CVE-2016-6303 3 4 18 21 12 3 1 1 2 2 
CVE-2015-1791 284 150 39 40 128 33 24 19 21 24 
CVE-2017-6508 77 8 19 35 35 75 1 1 1 20 
CVE-2014-9471 21 89 107 69 72 23 1 1 1 7 

Avg 80 36 21 20 39 32 5 6 6 13 
 
According to the results, SDCFM ranks the real vulnerable functions 13th on average, while 

Gemini ranks them 39th on average. In the top-5 candidate functions, SDCFM identifies 27 
real vulnerable functions with an accuracy of 67.5%, which is 2.25× higher than Gemini (the 
value is 12). More importantly, SDCFM ranks the real vulnerable function in the first place 18 
times, while Gemini correctly ranks that only 2 times. 

In Test 2, there are 120 different cross-architecture searches in total for three architectures. 
The results are shown in Fig. 7. There are 51 times (i.e., the sum of 17, 18, and 16) that 
SDCFM ranks the real vulnerable functions in the top-1, and Gemini only has 15 times (i.e., 
the sum of 6, 2, and 7). Among other top-k candidates produced by SDCFM, it still contains 
more real vulnerable functions than Gemini. These results prove that SDCFM has a stronger 
ability for cross-architecture vulnerability detection than Gemini. 

 
Fig. 7. The number of hits in the top-k candidates of Gemini and SDCFM on 120 vulnerability search 

tests across architectures. Specifically, SDCFM-ARM indicates using the O3 optimization level 
vulnerable function of ARM architecture as a query and searching it from the binaries of MIPS or 

PowerPC architecture with O0-O3 optimization levels. Others are all expressed in this way. 
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There are situations where the ranking of vulnerable functions detected by SDCFM lags 
behind Gemini. For example, as shown in Table 8, when searching for the CVE-2016-6303 
vulnerable function at the O1 optimization level in MIPS architecture, SDCFM ranks the real 
vulnerable function 6th, while Gemini ranks it in the second place. By analyzing and checking 
those functions that are placed before the real vulnerable function, we attribute this to two 
main reasons. One is that, although different functions may have different statistical features, 
structural features, and behavioral features, it is still possible to generate the same embedding 
for these functions through neural network fusion. The other reason is that SDCFM classifies 
Glibc API functions, hence, the functions containing similar Glibc API calls will have the 
same behavioral features, which may also result in the same embedding for different 
functions. 

5. Discussion and Future Work 
We have demonstrated the effectiveness and high accuracy of SDCFM in cross-architecture 
binary code similarity detection and vulnerability search. However, this method still faces 
some challenges. 

SDCFM uses static analysis methods for binaries to extract all the raw features according to 
CFM. Therefore, SDCFM cannot handle the obfuscated code in binaries currently, which may 
affect the detection accuracy. 

The extraction of CFG and other features currently used by CFM depends on angr 
completely. Therefore, the accuracy of feature extraction is determined by the analysis 
capability of angr. 

At present, SDCFM only focuses on the Glibc API and has not considered the other APIs. It 
is necessary to extend the scope of behavioral features to other public basic libraries in the 
future to improve the characterization ability further, which is exactly the focus of our future 
work. 

6. Conclusion 
This paper proposes a cross-architecture binary function similarity detection method based on 
composite feature model called SDCFM. The CFM covers behavioral features, statistical 
features, and structural features, to improve the ability of characterizing binary functions. 
Besides, SDCFM adopts the hierarchical embedding method to fuse statistical and behavioral 
features, and selects the attributes of predecessor nodes in CFG to iteratively update the graph 
embedding network. Experimental results show that the AUC value of SDCFM reaches 0.964 
on the benchmark dataset. Furthermore, when tested on the dataset consisting of binary 
functions with Glibc API function calls, a higher AUC (=0.983) can be reached. Meanwhile, 
SDCFM has a stronger ability to locate vulnerable functions accurately. Among the 120 
constructed cross-architecture vulnerability search tasks, SDCFM accurately places the target 
vulnerable function in the first candidate 51 times, which is 2.4× more than that of Gemini 
(only 15). In general, SDCFM further improves the accuracy and stability of firmware binary 
similarity detection. 
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